第6章 对称性与群论
- 格式:ppt
- 大小:2.81 MB
- 文档页数:96
物理学中的对称性与群论对称性与群论在物理学中有着重要的作用,对于理解自然界的本质和探究物质和能量的行为规律都有着不可或缺的意义。
本文将介绍对称性与群论在物理学中的应用,从对称群的定义、群表示与物理量变换、连续对称性和相对论性质等方面阐述其内涵和意义。
一、对称群的定义对称群是指一个物体或系统的所有对称操作所构成的群。
对称操作包括旋转、平移、镜像、反演等,它们是可以相互组合的,形成了一个数学结构,称为对称群。
对称群的研究可以揭示这个物体或系统的对称性质,从而为进一步研究提供了基础。
例如,一张圆形的纸片具有旋转对称性,可以将纸片顺时针或逆时针旋转若干度而看不出任何变化,这就是圆形的对称群。
另外,如果将圆形纸片剪成一条条线段,再沿着线段翻转,仍然能得到同样的图形,这就是镜像对称性。
这些对称操作构成了圆形的对称群。
二、群表示与物理量变换在物理学中,对称群不仅仅是一个数学结构,还是一种反映物理规律的基本规律。
在描述物理现象时,我们通常会用到物理量,如质量、电荷、能量等。
而这些物理量在对称操作下的变换也是非常重要的。
物理量的变换可以通过群表示的概念来描述。
群表示是将群元素映射到矩阵空间中的一个线性变换,在物理学中一般用来描述物理量的变化规律。
例如,一个物体在空间中的位置可以用一个三维矢量来表示,而空间中的平移操作可以用一个平移矩阵来表示。
这种表示方法可以方便地描述物体在平移下的位置变换。
另外,物理量的变换也可以用量子力学中的幺正变换来描述。
量子力学中,物理量由厄米矩阵表示,其变换由幺正矩阵表示。
这种表示方法可以方便地描述粒子在旋转、对称操作等对称变换下的状态变化规律。
群表示不仅适用于变换对称性的描述,还可以用来描述隐含对称性的物理规律。
例如,电荷在空间中的分布具有电荷密度对称性,这个对称性可以用群表示来描述。
此外,不少基本物理定律和理论都具有很强的对称性,如守恒定律、规范对称性等。
三、连续对称性和相对论性质对称群不仅在离散对称性中有着重要的应用,其在连续对称性中的应用也发挥着重要的作用。
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
一、群论对称性简介1.1 群论的定义群论是数学的一个分支,研究了具有某种对称性的数学结构。
一个群是由一组元素及它们的运算组成的集合,满足封闭性、结合律和单位元的性质。
1.2 对称性的概念对称性是指物体或结构在某种变换下保持不变的性质。
在群论中,对称性是指一个对象在某个变换作用下,仍然与原对象相同或等价。
1.3 群论对称性的应用群论对称性在数学、物理、化学等领域中具有重要意义。
例如,在物理学中,对称性原理可以帮助我们理解和解释自然界的规律。
二、群的基本性质2.1 封闭性如果一个集合中的元素经过某种运算后仍然在这个集合中,这个集合就具有封闭性。
对于群而言,封闭性是基本性质之一。
2.2 结合律结合律是指在群中,任意三个元素经过某种运算后的结果与它们的顺序无关。
即(a b) c = a (b c)。
2.3 单位元单位元是一个特殊的元素,它与其他元素相乘或相除后,结果仍然是原来的元素。
对于群而言,单位元是使群保持不变的元素。
三、群的分类3.1 循环群循环群是最简单的群之一,它的所有元素都可以表示为一个元素的循环乘积。
循环群可以分为奇循环群和偶循环群。
3.2 交换群交换群是指群中任意两个元素交换后,结果仍然是原来的元素。
交换群也称为阿贝尔群。
3.3 非交换群非交换群是指群中任意两个元素交换后,结果不再是原来的元素。
非交换群在数学和物理学中具有重要意义。
四、群的作用4.1 群的表示群的表示是指将群的作用映射到某个空间上的方法。
群的表示可以是线性的,也可以是非线性的。
表示理论在数学、物理学和计算机科学等领域中具有重要意义。
4.2 群的作用在数学中的应用群的作用在数学中可以用于解决方程、几何问题等。
例如,在代数几何中,群的作用可以帮助我们理解和解释空间的性质。
4.3 群的作用在物理学中的应用群的作用在物理学中可以用于描述粒子的对称性。
例如,在量子力学中,粒子的状态可以通过群的表示来描述。
五、群论的对称性与宇宙的规律5.1 群论在宇宙规律中的应用群论对称性可以帮助我们理解和解释宇宙中的规律。
数学物理中的群论和对称性群论和对称性是数学和物理学中非常重要的概念。
它们有着深刻的内在联系和相互依存的关系。
在本文中,我将详细探讨这两个概念,并阐明它们的应用和意义。
一、群论群论是研究集合上的代数结构的分支学科,它的基本概念是群。
群是一种数学结构,它由一组元素和一个二元运算组成,满足结合律、闭合性、恒等元素和逆元素等基本性质。
群论不仅仅是数学学科,而且在物理学、化学、计算机科学等领域也有着广泛的应用。
例如,量子力学中的对称性问题,晶体结构分析乃至密码学都涉及到了群论的相关知识。
群论的应用可以归纳为以下三个方面:对称性、代数下的几何学和群表示论。
其中,对称性是群论的最基础也是最广泛的应用之一。
二、对称性对称性是自然世界中各种现象的重要特征,例如,对称性可以用于描述物质结构中的周期性、分子电子结构的对称性、元素的周期性等等。
对于物理学家来说,对称性甚至是发现自然规律的一把钥匙。
对称性可以被形式化地定义为一个操作下的不变性。
例如,在平面上一个图形的旋转、镜像和平移都不影响其形状和大小,这就是对称性的体现。
在对称操作下不变的对象被称为对称群。
例如,一个正方形的对称群有8个元素,它包括4个旋转和4个镜像操作。
对称群的大小(群的元素个数)等于在该群中的操作数目。
对称群中的元素可以表示为置换符号,它们的乘积可以组成置换群,而置换群恰好是对称群的一个子群。
对于物理学家来说,研究对称性问题可以为他们发现自然规律提供重要线索。
物理学中经常用对称群来描述自然规律。
同时,对称性有利于简化计算。
例如,在研究统计物理问题时,对称性是研究系统能量的简化方法。
三、对称性和群论的应用对称性和群论在物理学中有着广泛的应用。
例如,对于原子和分子的电子结构问题,对称性可以用来预测能级和谱线。
在晶体学中,对称性是判断晶体结构的一种重要手段。
在相对论物理中,对称性和群论用于描述基本粒子和其相互作用的规律。
另外,对称性也在高能物理中使用,例如,对称性的不变性可以帮助研究强相互作用的强子之间的相互作用。
数学中的群论与对称性数学是现代科学的基础,涵盖了众多的分支学科,其中群论(Group Theory)就是一门重要的学科。
群理论作为数学中的一门基础学科,旨在研究一些具有结构的对象,如集合、变换、旋转等,以及这些对象之间的相互关系。
在现代数学中,群论的应用非常广泛,尤其在物理、化学、计算机科学等领域中,都有着重要的应用。
对称性是群论的一个重要概念,研究对称性也是数学中的一个重要分支。
对称性指的是某些对象在经过某种操作后仍能够保持它们的某些方面不变,给人们带来美感和和谐感。
在对称性的研究中,群论起着至关重要的作用。
群的定义群是指由一组元素与一个特定运算组成的结构。
该运算通常用“·”、“+”表示,具有以下三个性质:1. 封闭性:在群中任意两个元素进行运算的结果仍然在群中。
2. 结合律:群中任意三个元素a、b、c,满足(a·b)·c=a·(b·c)。
3. 单位元和逆元:群中存在一个元素e (称为单位元),满足对于任意元素a,有a·e=e·a=a;群中任意元素都存在一个逆元a-1,满足a·a-1=a-1·a=e。
群的基本性质群的基本性质分为以下几类:1. 消去律:如果a·b=a·c,其中a、b、c都是群中的元素,那么b=c。
2. 唯一性:群中只有一个单位元。
3. 逆元唯一性:群中任意一个元素的逆元唯一。
4. 恒等式:a·b的逆元为b-1·a-1。
5. 直积:如果有两个群 (G,*) 和 (H,+),则可以定义一个新的群(G×H,*),称为直积。
群的作用群论的应用非常广泛,尤其在物理、化学、计算机科学等领域中有重要的应用。
下面我们来介绍一下群在这些领域中的具体应用。
1. 物理在物理中,群论的应用非常广泛。
例如:(1)对称群:许多物理现象都具有对称性,如圆周对称、面内对称、平移对称等。
群论与对称性的研究对称性是数学中常见且重要的概念,而群论正是研究对称性的一种数学工具。
本文将探讨群论在对称性研究中的应用,从基本概念到一些重要的结果,深入探讨群论对于对称性理解和分析的重要性。
一、引言对称性在自然界和数学领域都起着至关重要的作用。
无论是物理学中的对称性定律,还是几何学中的对称图形,都有一个共同的基础——群论。
群论是代数学的一个分支,专门研究集合中的元素以及它们之间的运算规则。
群论可以用来描述和研究各种各样的对称性,从而在许多领域产生了深远的影响。
二、群的定义与基本性质群是一个集合 G,上面定义了一个运算 *,满足以下四个条件:封闭性、结合律、存在单位元和存在逆元。
群的定义是群论研究的核心,它不仅仅是一种抽象的代数结构,更是研究对称性的基础。
通过群的定义,我们可以描述和分析各种对称性,如平移、旋转、反射等。
三、对称群与置换群对称群和置换群是群论中最常见的两种群。
对称群是一个集合中所有对称变换所组成的群,而置换群是一个集合中所有元素的排列所组成的群。
对称群和置换群是群论与对称性研究紧密联系的重要工具。
通过对称群和置换群,我们可以描述和分析各种几何图形和物理现象中的对称性。
四、群同态与群同构群同态和群同构是群之间的映射关系。
群同态是指将一个群映射到另一个群,并保持运算规则的关系。
群同构是指两个群之间存在一种一一对应关系,并且保持运算规则的关系。
群同态和群同构可以帮助我们识别和分析不同群之间的相似性和差异性,从而更深入地理解对称性的本质。
五、对称性与群表示论群表示论是研究群如何作用于向量空间的一种数学工具。
通过群表示论,我们可以将群的元素表示为矩阵或线性运算符,并且研究其在向量空间中的作用。
群表示论在物理学和几何学中具有广泛的应用,例如量子力学中的旋转群表示和晶体学中的空间群表示等。
六、对称性破缺与群的标准模型对称性破缺是指在某些条件下,对称性被破坏或隐藏的现象。
群论在对称性破缺的研究中发挥了重要的作用,特别是在物理学中的标准模型的研究中。
有限运动群与离散运动群对称是一种普遍存在现象,在数学中它与群有着密切的联系,这里我们将从群的角度来理解对称,并讨论刚体运动的分类与性质,根据这些性质,我们将刻画平面上有限运动群和离散运动群。
对称是一种普遍存在现象,在数学中它与群有着密切的联系,而刚体运动是一种特殊的对称,他在现实生活中有广泛的应用,比如说力学,晶体化学,纺织工业中,都有很多应用。
下面将给出刚体运动的定义与性质,并由此推导出一些有趣的结果。
定义 平面P 到自身的映射:m P P →称为刚体运动,如果它保持距离不变。
定理1 任意刚体运动都可以由下列三类刚体运动合成得到:(i )由向量a 给出的平移a t ;(ii )围绕原点转过角度θ的旋转θρ;(iii )关于x 轴的反射r 。
定理2 任意一个刚体运动为下列运动之一:(a ) 保向运动:(i )平移:由向量a 给出的平移:a t p p a →+(ii )旋转:绕某一点转过角度θ (b )反向运动:(i )关于直线l 的反射(ii )滑动反射:先关于直线l 反射,再平移一个与直线l 平行的向量a(c )恒等映射设G 是保持原点不动的刚体运动群的群O 的一个子群,则G 是下面的群之一: (a )n G C =:n 阶循环群,由旋转θρ生成,其中2nπθ=。
(b )n G D =:2n 阶二面体群,由两个元素生成,一个由旋转θρ生成,其中2nπθ=,另一个由关于过原点的直线的反射'r 生成。
证明:设G 是O 的有限子群,而O 的元素是旋转θρ和反射r θρ。
(1)G 中的元素都是旋转。
我们要证明在这种情形下G 是循环群。
若G={1},则1G C =,否则G 有一个非平凡的旋转θρ。
令θ为G 元素中旋转转过的最小正角度。
则G 由θρ生成。
若有αρ是G 中的旋转,设n θ是比α小的最大的θ的倍数,则n αθβ=+,且0βθ≤<,那么有nn n G βαθαθαθρρρρρρ---===∈,由于θ是最小正旋转,因而有0β=。
对称性的群论对称性是数学中一个重要的概念,它的应用范围广泛,从物理到化学,从几何到图论。
对称性的研究已成为数学的重要分支之一,而对称性的群论是研究对称性的主要工具之一。
一、群论基础群论是数学中的一个分支,研究代数结构中的集合和运算之间的关系。
一个群是一个集合,其中包含一些元素和一些运算,这些运算必须满足特定的代数性质,如封闭性、结合律、单位元、逆元等。
群论的基础在于集合和代数运算的抽象概念,因此它可以应用于各种领域。
二、对称性的群论对称性的群论是研究对称性的一种方法,它将对称性看做一种代数结构的变换,这种代数结构可以用群表示。
例如,在平面上,将一个点绕另一个点旋转,或者将一个图形通过对称轴镜像,可以看做是一个变换,这种变换可以用群表示。
群的元素表示变换,群的运算定义了这些变换的组合方式。
对称性的群论在物理学中有广泛的应用,例如对称群在量子力学中的应用,空间对称群在晶体学中的应用。
而在几何学中,对称性的群论是研究对称性的重要工具,可以用群来表示对称性,对称性可以被看做一种约束条件,用群论解决几何问题的方法被称为群论几何。
三、例子1. 正方形的对称群我们来看一个例子,一个正方形有8个对称变换,可以分别表示为:这些变换组成了正方形的对称群,可以用符号S<sub>4</sub>表示,S<sub>4</sub>的元素是正方形的8个对称变换,例如S<sub>4</sub>的元素a表示将正方形逆时针旋转90度,而S<sub>4</sub>的元素b表示将正方形相对于水平轴对称。
2. 正三角形的对称群正三角形有6个对称变换,可以表示为:这些变换组成了正三角形的对称群,可以用符号S<sub>3</sub>表示,S<sub>3</sub>的元素是正三角形的6个对称变换,例如S<sub>3</sub>的元素a表示将正三角形逆时针旋转120度,而S<sub>3</sub>的元素b表示将正三角形相对于一条对角线对称。