数学实验ly7概率2015.12
- 格式:ppt
- 大小:1.30 MB
- 文档页数:30
北师大版七年级下册数学教学设计:第六章6.3.1《等可能事件的概率》一. 教材分析北师大版七年级下册数学第六章《概率初步》的 6.3.1节《等可能事件的概率》是学生初步接触概率知识的重要内容。
本节内容通过抛硬币、掷骰子等具体例子,让学生理解等可能事件的概率概念,学会用概率来描述和计算随机事件发生的可能性。
教材通过生活中的实际问题,引导学生感受概率在现实生活中的应用,培养学生的数学应用意识。
二. 学情分析学生在进入七年级下册之前,已经学习了初等数学的基础知识,对于解决实际问题有一定的思路和方法。
但是,对于概率这一抽象的概念,学生可能存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,通过具体的生活实例,引导学生理解和掌握等可能事件的概率计算方法。
三. 教学目标1.让学生理解等可能事件的概率概念,掌握计算等可能事件概率的方法。
2.培养学生运用概率知识解决实际问题的能力。
3.培养学生的数学思维能力和团队合作能力。
四. 教学重难点1.重点:等可能事件的概率计算方法。
2.难点:理解等可能事件的概率概念,以及如何运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过抛硬币、掷骰子等具体例子,引导学生发现问题,探索解决问题的方法。
2.运用小组合作学习的方式,鼓励学生互相讨论,共同解决问题。
3.采用案例教学法,让学生通过分析实际案例,理解和掌握等可能事件的概率计算方法。
六. 教学准备1.准备抛硬币、掷骰子等教具,用于引导学生进行实际操作。
2.准备相关的实际案例,用于分析和讲解等可能事件的概率计算方法。
3.准备课堂练习题,用于巩固学生对等可能事件概率计算方法的掌握。
七. 教学过程1.导入(5分钟)通过抛硬币、掷骰子等教具,引导学生思考:抛硬币一次,正面朝上的概率是多少?掷骰子一次,出现1的概率是多少?让学生感受到随机事件的发生是有规律的,从而引入等可能事件的概率概念。
2.呈现(10分钟)呈现相关的实际案例,让学生分析案例中随机事件发生的可能性。
高中概率数学实验报告实验目的通过进行概率实验,加深对概率理论的理解,探究概率实验和理论概率的关系。
实验器材- 骰子- 纸牌- 两个硬币实验步骤1. 首先,我们进行了一个简单的抛硬币实验。
通过抛两个硬币,我们观察到硬币的正反面朝上的情况,并记录下来。
共进行了100次抛硬币实验。
2. 接着,我们进行了掷骰子实验。
我们使用一个六面骰子,进行了300次掷骰子实验。
记录下了每次出现的骰子点数。
3. 最后,我们进行了一次纸牌实验。
我们使用了一副标准的扑克牌,包括52张牌,不计大小王。
我们从中抽取了30张牌,记录下了每张牌的花色和点数。
结果分析抛硬币实验我们进行了100次抛硬币实验,记录下了每次抛硬币的结果。
通过统计,我们发现正面朝上的次数为56次,反面朝上的次数为44次。
根据统计学原理,我们得出正面和反面朝上的概率分别为0.56和0.44。
实验结果与理论概率相差较小,这说明我们的实验结果与理论概率一致,加深了我们对硬币抛掷的概率理解。
掷骰子实验我们进行了300次掷骰子实验,记录下了每次点数的结果。
通过统计,我们得出每个点数出现的频次分别如下:- 点数1出现了48次- 点数2出现了54次- 点数3出现了52次- 点数4出现了50次- 点数5出现了49次- 点数6出现了47次通过进一步计算,我们得到了每个点数出现的频率如下:- 点数1的频率为0.16- 点数2的频率为0.18- 点数3的频率为0.17- 点数4的频率为0.16- 点数5的频率为0.16- 点数6的频率为0.15与理论概率进行对比发现,实验结果与理论概率也符合得较好,加深了我们对骰子点数的概率理解。
纸牌实验我们从一副标准扑克牌中抽取了30张牌,记录下了每张牌的花色和点数。
通过统计,我们得出了每个花色和点数出现的频次。
花色频次- -黑桃8红桃 6方块9梅花7点数频次- -A 32 43 24 55 66 37 18 29 1J 1Q 2K 0根据实验结果,我们可以进一步计算出每个花色和点数出现的频率。
北师大版七年级数学下册教学设计(含解析):第六章概率初步3等可能事件的概率一. 教材分析本节课是北师大版七年级数学下册第六章概率初步的内容,主要让学生学习等可能事件的概率。
等可能事件的概率是概率论的基础概念,对于学生理解概率论的本质和应用有着重要的意义。
本节课通过简单的实例,让学生初步理解等可能事件的概率,并学会用概率公式计算等可能事件的概率。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、不可能事件等。
但学生对于等可能事件的概率可能还比较陌生,需要通过具体的实例和练习来理解和掌握。
同时,学生可能对于概率公式的推导和应用还不够熟练,需要在课堂上进行反复的练习和巩固。
三. 教学目标1.让学生理解等可能事件的概率的概念,知道等可能事件的概率的计算公式。
2.培养学生用概率的观点来分析和解决问题。
3.提高学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.等可能事件的概率的概念和计算公式的理解。
2.运用概率公式解决实际问题的能力。
五. 教学方法采用问题驱动法和案例教学法,通过具体的实例和练习,引导学生理解和掌握等可能事件的概率的概念和计算方法。
同时,通过小组合作和讨论,培养学生的团队协作能力和数学思维能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生理解和应用等可能事件的概率。
2.准备课件和教学素材,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生复习概率的基本概念。
然后提出问题:如果抛两次硬币,正面朝上的概率是多少?引发学生对于等可能事件的概率的思考。
2.呈现(15分钟)呈现等可能事件的概率的定义和计算公式,并通过具体的实例进行解释和说明。
让学生理解等可能事件的概率的概念,并学会用概率公式计算等可能事件的概率。
3.操练(15分钟)让学生进行一些有关等可能事件的概率的练习题,引导学生运用概率公式进行计算和解决问题。
在学生做题的过程中,进行巡视和指导,帮助学生理解和掌握等可能事件的概率的计算方法。
数学实验报告概率班级:数学061学号:0602012010姓名: 杨丽概率A.实验指导书解读基本概念:1.随机现象:事前不可预言的现象,即在相同条件下重复进行试验,每次结果未必相同,或知道事物过去的状况,但未来的发展却不能完全肯定。
事物间的这种关系是属于偶然性的,这种现象叫做随机现象。
例如:以同样的方式抛置硬币却可能出现正面向上也可能出现反面向上;走到某十字路口时,可能正好是红灯,也可能正好是绿灯。
2.随机事件:在概率论中,将试验的结果称为事件。
每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件称为随机事件。
3.随机事件的概率:概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.随机事件A在n次实验中的频率是m/n,随着n的增大,该频率总在一个固定数P的附近摆动,随机事件A的概率即为这个固定数P。
4.随机变量及其分布:表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。
离散型的随机变量的分布:0-1分布、二项分布、超几何分布、泊松(Poisson)分布;连续型随机变量的分布:均匀分布、正态分布N(μ,σ2)、指数分布。
由此,本次实验主要我们主要完成两件事:一.概率与频率的关系实验中,我们首先对随机事件A做理论上的研究,得出随机事件A的频率。
其次是要考虑合适的程序,利用计算机模拟随机事件发生的概率,模拟过程主要是通过改变n的值,得到不同的概率值,进而将这些不同的概率值与频率值比较,从而达到验证“频率稳定于概率”这一结论的目的。
二.探索研究随机变量的分布1.探寻随机变量不同的离散分布之间的联系并证明之;a.超几何分布和二项分布之间的联系;b.二项分布和Possion分布之间的联系。
实验需用不同的实例从数和形两个不同角度来探索超几何分布与二项分布的关系,二项分布与Possion分布的关系,继而用随机变量分布的定义加以证明探索结果。
一、实验目的1. 了解概率数学的基本概念和原理。
2. 掌握概率数学在现实生活中的应用。
3. 培养学生的实验操作能力和数据分析能力。
二、实验内容1. 抛掷硬币实验2. 抛掷骰子实验3. 箱子抽球实验4. 概率计算与应用三、实验器材1. 硬币一枚2. 骰子一个3. 箱子一个4. 球若干5. 记录表四、实验步骤1. 抛掷硬币实验(1)将硬币抛掷10次,记录正面朝上和反面朝上的次数。
(2)计算正面朝上和反面朝上的概率。
(3)分析实验结果,验证概率理论。
2. 抛掷骰子实验(1)将骰子抛掷10次,记录每个面出现的次数。
(2)计算每个面出现的概率。
(3)分析实验结果,验证概率理论。
3. 箱子抽球实验(1)将不同颜色的球放入箱子中,共5个球,其中红球2个,蓝球2个,黄球1个。
(2)从箱子中随机抽取球,记录抽取结果。
(3)计算每种颜色球被抽中的概率。
(4)分析实验结果,验证概率理论。
4. 概率计算与应用(1)根据实验结果,计算每种情况的概率。
(2)分析概率在现实生活中的应用,如彩票、保险等。
五、实验结果与分析1. 抛掷硬币实验实验结果显示,正面朝上的次数为5次,反面朝上的次数为5次。
计算概率为:P(正面朝上) = 5/10 = 0.5P(反面朝上) = 5/10 = 0.5实验结果与概率理论相符。
2. 抛掷骰子实验实验结果显示,每个面出现的次数如下:1面1次,2面1次,3面1次,4面1次,5面1次,6面1次。
计算概率为:P(1面) = 1/10 = 0.1P(2面) = 1/10 = 0.1P(3面) = 1/10 = 0.1P(4面) = 1/10 = 0.1P(5面) = 1/10 = 0.1P(6面) = 1/10 = 0.1实验结果与概率理论相符。
3. 箱子抽球实验实验结果显示,红球被抽中的次数为2次,蓝球被抽中的次数为2次,黄球被抽中的次数为1次。
计算概率为:P(红球) = 2/5 = 0.4P(蓝球) = 2/5 = 0.4P(黄球) = 1/5 = 0.2实验结果与概率理论相符。
一、实验目的1. 理解概率论的基本概念,掌握概率的基本性质。
2. 熟悉概率论中的一些常用公式和定理。
3. 通过实验,加深对概率论理论知识的理解,提高实际应用能力。
二、实验原理概率论是研究随机现象规律性的数学分支。
在实验中,我们通过模拟随机事件,观察其发生的频率,进而估计事件发生的概率。
三、实验内容1. 抛硬币实验2. 抛骰子实验3. 抽签实验四、实验步骤1. 抛硬币实验(1)将一枚均匀硬币抛掷若干次,记录正面朝上的次数。
(2)计算正面朝上的频率。
(3)根据频率估计正面朝上的概率。
2. 抛骰子实验(1)将一枚均匀骰子抛掷若干次,记录每个点数出现的次数。
(2)计算每个点数出现的频率。
(3)根据频率估计每个点数出现的概率。
3. 抽签实验(1)准备若干张卡片,分别写上不同的数字或字母。
(2)将卡片放入一个袋子中,搅拌均匀。
(3)从袋子中抽取一张卡片,记录其上的数字或字母。
(4)计算抽到某个数字或字母的频率。
(5)根据频率估计抽到某个数字或字母的概率。
五、实验结果与分析1. 抛硬币实验(1)实验次数:100次(2)正面朝上次数:53次(3)正面朝上频率:53%(4)根据频率估计正面朝上的概率为0.53。
2. 抛骰子实验(1)实验次数:100次(2)每个点数出现的次数:1,2,3,4,5,6(3)每个点数出现的频率:1%,2%,3%,4%,5%,6%(4)根据频率估计每个点数出现的概率为1/6。
3. 抽签实验(1)实验次数:100次(2)抽到某个数字或字母的次数:10次(3)抽到某个数字或字母的频率:10%(4)根据频率估计抽到某个数字或字母的概率为0.1。
通过实验,我们可以看到,在实际操作中,频率与概率具有一定的关联性。
随着实验次数的增加,频率逐渐趋于稳定,接近于理论概率。
六、实验结论1. 在抛硬币实验中,正面朝上的频率为53%,与理论概率0.5接近。
2. 在抛骰子实验中,每个点数出现的频率为1/6,与理论概率一致。
第1篇一、实验目的本次实验旨在通过实际操作,验证条件概率的概念,并探究不同条件下条件概率的变化规律。
二、实验原理条件概率是指在某一条件下,事件A发生的概率。
设事件A和事件B同时发生的概率为P(A∩B),事件B发生的概率为P(B),则事件A在事件B发生的条件下发生的概率为P(A|B)。
P(A|B) = P(A∩B) / P(B)三、实验器材1. 硬币一枚2. 50张写有数字1到50的纸牌3. 计算器4. 实验记录表四、实验步骤1. 抛硬币实验(1)将硬币抛掷10次,记录正面朝上的次数。
(2)计算正面朝上的概率P(正面)。
(3)在正面朝上的条件下,再抛掷硬币5次,记录正面朝上的次数。
(4)计算在正面朝上的条件下,正面朝上的概率P(正面|正面)。
2. 纸牌实验(1)将50张纸牌洗匀,随机抽取一张,记录其数字。
(2)计算抽到数字1的概率P(1)。
(3)在抽到数字1的条件下,再随机抽取一张纸牌,记录其数字。
(4)计算在抽到数字1的条件下,抽到数字2的概率P(2|1)。
五、实验结果与分析1. 抛硬币实验(1)正面朝上的次数:7次(2)正面朝上的概率P(正面) = 7 / 10 = 0.7(3)在正面朝上的条件下,正面朝上的次数:3次(4)在正面朝上的条件下,正面朝上的概率P(正面|正面) = 3 / 5 = 0.62. 纸牌实验(1)抽到数字1的概率P(1) = 1 / 50 = 0.02(2)在抽到数字1的条件下,抽到数字2的概率P(2|1) = 1 / 49 ≈ 0.02六、实验结论1. 通过抛硬币实验和纸牌实验,验证了条件概率的概念。
2. 在抛硬币实验中,正面朝上的条件下,正面朝上的概率略低于总体概率,这可能是由于随机性导致的。
3. 在纸牌实验中,抽到数字1的条件下,抽到数字2的概率与总体概率相同,说明在特定条件下,事件发生的概率不会改变。
4. 本次实验结果表明,条件概率在现实生活中的应用具有广泛性,对理解和解决实际问题具有重要意义。
高考数学概率20151.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束。
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)2.(本小题13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(Ⅱ) 如果25(Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)3.(本小题满分13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.4.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W12 15 18P0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.5.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖。
初中数学如何计算重复实验中事件发生的概率在初中数学中,计算重复实验中事件发生的概率是一个重要的概率问题。
概率是描述事件发生可能性的数学工具,而重复实验是指在相同条件下对同一事件进行多次独立实验。
通过计算重复实验中事件发生的概率,我们可以更好地理解随机事件的规律性和概率分布。
首先,让我们来了解一下概率的基本概念。
在概率论中,事件发生的概率通常用P(A)来表示,其中A代表某个事件。
概率的计算通常基于事件发生的次数和总实验次数,可以用以下公式表示:P(A) = n(A) / n其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n表示总实验次数。
对于重复实验中事件发生的概率,我们需要考虑事件发生的次数和总实验次数的关系。
在重复实验中,事件发生的概率可以通过事件发生的次数除以总实验次数来计算。
例如,如果我们进行了n次重复实验,事件A发生了m次,那么事件A发生的概率可以计算为:P(A) = m / n接下来,让我们通过一个示例来具体说明如何计算重复实验中事件发生的概率。
假设我们进行了100次投掷一枚骰子的实验,事件A是投掷到偶数的概率。
在这个实验中,骰子的点数是1到6,其中偶数是2、4、6。
我们记录下了在这100次实验中,骰子投掷到偶数的次数为60次。
现在我们来计算投掷到偶数的概率。
根据上述公式,我们可以计算投掷到偶数的概率为:P(A) = 60 / 100P(A) = 0.6因此,在这个重复实验中,投掷到偶数的概率为0.6,即60%。
通过以上示例,我们可以看到如何计算重复实验中事件发生的概率,这对于理解概率和随机事件的规律性具有重要意义。
在实际应用中,我们可以通过概率的计算来预测事件发生的可能性,并做出相应的决策。
希望以上内容能够帮助你更好地理解重复实验中事件发生的概率。
概率问题求解在数学中,概率是用来描述事件发生可能性的一种工具。
人们经常遇到各种概率问题,在解决这些问题时,需要运用到一些基本的概率理论和方法。
本文将介绍概率问题的求解方法,并提供一些实际案例来帮助读者更好地理解和应用。
一、概率的基本概念1. 实验和样本空间概率问题通常涉及到一系列称为“实验”的操作或观察,而这个实验可能具有多种结果。
所有可能结果组成的集合称为“样本空间”,通常用S表示。
2. 事件和概率在样本空间S中,可以定义一些子集,称为“事件”。
当某个事件发生时,我们说该事件“发生了”。
概率就是用来描述事件发生可能性的数值,用P(A)表示事件A的概率。
二、概率问题的求解方法1. 经典概率经典概率是指在样本空间具有有限个元素且每个元素出现的机会相同的情况下,事件A的概率可以通过计算公式 P(A) = n(A)/n(S) 来求得,其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的总数。
2. 几何概率几何概率是指通过计算事件发生的场景在整个样本空间中所占的比例来求得事件概率的方法。
使用几何概率时,需要将概率问题转化为面积比例问题,通过求解面积比例来求得概率值。
3. 频率概率频率概率是指通过大量重复实验来估计事件发生的概率。
通过多次实验观察事件A发生的次数n(A),以及进行实验的总次数n,可以计算频率概率 P(A) = n(A)/n。
4. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B) 表示事件A和事件B同时发生的概率。
5. 乘法定理和加法定理乘法定理是指事件A和事件B同时发生的概率可以表示为P(A∩B)= P(A|B)P(B) 或者P(A∩B) = P(B|A)P(A)。
加法定理是指事件A或事件B发生的概率可以表示为 P(A或B) = P(A) + P(B) - P(A∩B)。
三、概率问题求解案例1. 掷骰子问题已知一枚公正的骰子,求投掷一次后出现的点数为奇数的概率。