数学实验四(概率论)_6
- 格式:doc
- 大小:353.50 KB
- 文档页数:8
2023年数学实验(李尚志著)课后习题答案下载数学实验(李尚志著)课后答案下载数学实验是借助数学软件,结合所学的数学知识解决实际问题的一门实践课.本书包括数学软件MATLAB的入门知识,数学建模初步及运用高等数学、线性代数与概率论相关知识的实验内容.亦尝试编写了几个近代数学应用的阅读实验,对利用计算机图示功能解决实际问题安排了相应的实验.实验选材贴近实际,易于上机,并具有一定的趣味性。
数学实验(李尚志著):图书信息点击此处下载数学实验(李尚志著)课后答案数学实验(李尚志著):内容简介书名:数学ISBN: 9787030154620开本:16开定价: 22.00元数学实验(李尚志著):图书目录绪论第1章MATLAB简介与入门1.1简介1.2应用人门1.3MATLAB的语言程序设计简介 1.4特殊量与常用函数1.5图形功能1.6M文件1.7符号运算与应用第2章微分方程建模初步2.1模式与若干准则2.2阅读与理解2.3几个例子2.4阶微分方程定性解的图示第3章平面线性映射的迭代3.1线性函数迭代3.2平面线性映射的'迭代第四章微分方程数值解4.1算法4.2欧拉与龙格-库塔方法4.3模型与实验第5章曲线拟合5.1磨光公式5.2修正与误差5.3进一步讨论的问题第6章图的着色6.1一个时刚安排问题6.2数学思想的导出6.3一般的计数问题6.4进一步探索的问题第7章敏感问题的随机调查 7.1阅读与理解7.2直觉的定义7.3统计思想的一个基本原理 7.4随机应答调查7.5估计的基本性质7.6估计的其他性质第8章数学建模8.1投篮角度问题8.2壳形椅的讨论与绘图8.3独家销售商品广告问题8.4售报策略8.5Galton钉板问题第9章优化问题9.1优化工具箱9.2优化函数的使用9.3污水控制第10章图像增强10.1图像及操作10.2直接灰度调整10.3直方图处理10.4空域滤波增强10.5频域增强第11章数学曲面11.1MATLAB语言的预备知识11.2几种有趣的数学曲面11.3默比乌斯曲面族第12章阅读实验一泛函分析初步12.1一个例予12.2距离空间简介12.3应用12.4线性空间与Hilbert空间12.5例与问题第13章阅读实验二群与应用13.1背景与阅读13.2抽象群13.3应用第14章阅读实验三积分教学中的几点注释 14.1阅读与理解14.2理论阐述第15章建模竞赛真题15.1非典数学模型的建立与分析15.2西大直街交通最优联动控制15.3股票全流通方案数学模型的创新设计附录A数学实验课实验教学大纲。
概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。
记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。
2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。
这充分说明模拟情况接近真实情况,频率接近概率0.5。
试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。
,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。
在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。
每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。
数学实验(概率论)题目一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。
1. 用MA TLAB 计算泊松分布用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 3.用MA TLAB 计算均匀分布乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。
4.用MA TLAB 计算指数分布用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少? 5。
用MATLAB 计算正态分布 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 二.用MATLAB 计算随机变量的期望和方差 1.用MA TLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望 1)。
一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值 2)。
已知随机变量X 的分布列如下:{}kk X p 21== ,,2,1n k =计算.EX (2)用MATLAB 计算连续型随机变量的数学期望假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .(3)用MATLAB 计算随机变量函数的数学期望假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大? 2. 用MA TLAB 计算方差(1)利用MATLAB 计算:设有甲、乙两种股票,今年的价格都是10元,一年后它们的试比较购买这两种股票时的投资风险.。
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................................. 错误!未定义书签。
第二章随机变量及其分布.................................. 错误!未定义书签。
第三章多维随机变量及其分布........................... 错误!未定义书签。
第四章随机变量的数字特征 .............................. 错误!未定义书签。
第五章大数定律和中心极限定理 .. (2)第六章数理统计的基本概念 (9)第七章参数估计 ................................................ 错误!未定义书签。
第八章假设检验 ................................................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为0.5,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用0.925的概率确信在1000次试验中A 发生的次数在200到300之间?分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用0.925的概率确信在1000次试验中A 发生的次数在200到300之间.解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP .95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于0.95.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(, =i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V 是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)( =====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21 是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121 近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21 独立同分布,从而其函数22221,,,n X X X 也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n 111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim .4.设随机变量 ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列 ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(l i m 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x n n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P ; (D) 01lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?13.设5021,,,X X X 是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S nS n S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么?“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
1(A )三、解答题1•一颗骰子抛两次,以 X表示两次中所得的最小点数(1) 试求X 的分布律; (2)写出X 的分布函数.解:(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共 36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有C 2 6-1 (这里C 2指任选某次点 数为1, 6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为C ; 6多1 1算了一次)或C 2 5 1种,故P X 1 C 26-1C25 1耳,其他结果类似36 3636可得•0, X1P{X 1} ,1X 2P{X 1} P{X 2} ,2X3F(x)P{X 1} P{X 2} P{X 3}, 3 x 4P{X 1} P{X 2} P{X3}P{X 4}, 4 x 5 P{X1} P{X2} P{X 3} P{X4} P{X5}, 5 x 61 ,x 622 •某种抽奖活动规则是这样的:袋中放红色球及白色球各 5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出 5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.解:注意,这里 X 指的是赢钱数,X 取0-1或100-1,显然P X 99k3.设随机变量 X 的分布律为P{X k} a ,k 0,1,2, k!k解:因为 a ae 1,所以a e k 0 k!4.设随机变量X 的分布律为X -1 2 3 p1/41/21/4(1)求X 的分布函数;1 3 512627,3 翌,4 3635,5 36x 2 x 3x 4 x 5x 6 62 1 C ;0 1260为常数,试求常数 a .3⑵求P{X 丄},P{- X 5},P{2 x 3}.2 2 2解:40, x -1布,而与时间间隔的起点无关(时间以小时计)(1) 求某一天中午12时至下午3时没有收到紧急呼救的概率. (2) 求某一天中午12时至下午5时至少收到一次紧急呼救的概率. 解:(1) X ~ P 0.5t P 1.5 P X 0 e 1.5. (2) 0.5t2.50, x -1P{X 1}, 1 x2(1) F (x)P{X 1} P{X 2}1, x 3⑵P 1XX1 124P 2 X 3 P X 2X 3 5.设随机变量X 的分布律为 P{X k}(1) P{X =偶数}(2) P{ X 5}(3) P{ X=3的倍数}2 x 33 , ,2x341, x 33 51 P — X P X2 —222P X2 3 P X 3.4扌,k 1,2, 求:解:(1) P X 偶数丄1丄 22 221 lim i1(2) P X 51 P X 4115 1 16 16⑶P X 3的倍数23236.某公安局在长度为i123ilim123t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分2.5丄,1x2 45 7.某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概6解:设射击的次数为 X ,由题意知X ~ B 400,0.2i k k 400 kP X 2 1 P X 11 C 4000.02 0.98k 0查表泊松分布函数表得:P{X 2} 1 0.28 0.99728.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信(1)系数a ;(2) X 落在区间(0,[)内的概率.号•现进行5次独立试验,试求指示灯发出信号的概率.解:设X 为事件A 在5次独立重复实验中出现的次数,则指示灯发出信号的概率 X ~ B 5,0.3 p P X 3 1 P X 3 1 (C 00.3°0.75 C 50.310.74 C ;0.320.73) 1 0.8369 0.1631. 9.设顾客在某银行窗口等待服务的时间 X (以分钟计) 在窗口等待服务,若超过 务而离开窗口的次数.写出 服从参数为 5 10分钟,他就离开.他一个月要到银行 5次,以 Y 的分布律,并求P{Y 1}.指数分布•某顾客 Y 表示他未等到服 x 解:因为X 服从参数为5的指数分布,则F(x) 1 e T , P X 10 Y~ B5, e 2 , 1 F(10) e 2 ,则 P{Y k} C5 (e 2)k (1 e 2)5k,k 0,1, 5 P{Y 1} 1- P{Y 0} 1 (1 e 2)5 0.5167 a cosx. 10.设随机变量 X 的概率密度为 f(x)0,|x|~2,试求:|x |2解:(1)由归一性知:1 f (x)dx2a cosxdx 2a ,所以 a2由于上面二项分布的概率计算比较麻烦, 所以而且X 近似服P{X 2}18k ek 0k!7⑵-11.2.P{0 X —} ; cosxdx sin x |(424 .0,x011 . 设连续随机变量X的分布函数为F(x)Ax,0x 11,x1⑶X的概率密度.试求:(1) 解系数(1)A;由⑵X落在区间(0.3, 0.7)内的概率;的连续性可得lim F(x)F(x )在x=1 lim F(x) F(1),即A=1.x 1(2) 0.3 X 0.7 F(0.7) F(0.3) 0.4.(3) X的概率密度 f (x) F (x)2x,00,12.设随机变量X服从(0, 5)上的均匀分布,求的概率.x的方程4x2 4Xx X 0有实根解:因为X服从(0, 5)上的均匀分布,所以1f(x) 50x5其他2 2方程4x 4Xx X(x 2)( X2(4X) 16X1,所以有实根的概率为0有实根,则32 51dx2510dxX〜N(3, 4)13.设求P{2 X 5}, P{(1) X 10}, P{ X 2}, P{X解: 确定c使得P{X c}设d满足P{X d} 0.9,问d至多为多少?(1)因为X ~ N(3,4)所以P{X c};2 3P{2 X 5} P{〒穿}P{1}(1) (0.5) (1) (0.5) 1 0.8413 0.6915 0.5328P 4 X 108F(2)(2.5)经查表得1 (0),即2专)故斗214.设随机变量1.29,解:P XF(所以(k)15.设随机变量如何变化的?(3.5)2 0.999810 3 4 3(^)2 2(3.5) 2 (3.5)1 0.99962) 1(0.5)0.1,解:X ~ N(,(0.5)0.3023F(3),则P X2X2(2.5)0.6977(0)得c 3 ;由概率密度关于即(-d 3)20.42.X服从正态分布2 2 (k)0.95 , p XN(0,1 0.5 0.5.c 3 1F(c)(〒)-,x=3对称也容易看出。
1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。
一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。
我们把这一类型现象称之为确定性现象或必然现象。
如在一个大气压下,水在100度时会沸腾等。
一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。
这一类型的现象我们称之为偶然性现象或随机现象。
如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。
二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。
基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。
则样本点有6个。
若记,16i i i ω=≤≤,i ω即为样本点。
样本空间为123456{,,,,,}ωωωωωωΩ=。
记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。
B 为一个复合事件。
三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。
《概率论与数理统计》同步练习册学号________姓名________专业________班级________广东省电子技术学校继续教育部二O一O年四月练习一一、选择题1.设A,B,C表示三个随机事件,则A B C表示<A)A,B,C中至少有一个发生; <B)A,B,C都同时发生;<C)A,B,C中至少有两个发生; <D)A,B,C都不发生。
2.已知事件A,B相互独立,且P(A>=0.5,P(B>=0.8,则P<A B)=(A> 0.65 。
(B> 1.3。
(C>0.9。
(D>0.3。
b5E2RGbCAP3.设X~B<n,p),则有<A)E<2X-1)=2np;<B)E<2X+1)=4np+1;<C)D<2X+1)=4np<1-p)+1;<D)D<2X-1)=4np<1-p)。
4.X的概率函数表<分布律)是xi -1 0 1pi 1/ 4 a 5/12则a=< )<A)1/3;<B)0;<C)5/12;<D)1/4。
5.常见随机变量的分布中,数学期望和方差一定相等的分布是<A)二项分布;<B)标准正态分布;<C)指数分布;<D)泊松分布。
二、填空题6.已知:A={x|x<3} ,B={x|2<x<5}.则A B=__________________, A-B=_____________________。
. 7.已知电路由电池A与两个并联电池B和C串联而成,各电池工作与否相互独立。
设电池A,B,C损坏的概率均为0.2。
则整个电路断电的概率是______________________.p1EanqFDPw三、证明题8.设随机变数具有对称的分布密度函数,即证明:对任意的有<1);<2)P<;<3)。
引言概述:高等数学数学实验报告(二)旨在对高等数学的相关实验进行探究与研究。
本次实验报告共分为五个大点,每个大点讨论了不同的实验内容。
在每个大点下,我们进一步细分了五到九个小点,对实验过程、数据收集、数据分析等进行了详细描述。
通过本次实验,我们可以更好地理解高等数学的概念和应用。
正文内容:一、微分方程实验1.利用欧拉法求解微分方程a.介绍欧拉法的原理和步骤b.详细阐述欧拉法在实际问题中的应用c.给出具体的实例,展示欧拉法的计算步骤2.应用微分方程建立模型求解实际问题a.介绍微分方程模型的建立方法b.给出一个具体的实际问题,使用微分方程建立模型c.详细阐述模型求解步骤和结果分析3.使用MATLAB求解微分方程a.MATLAB求解微分方程的基本语法和函数b.给出一个具体的微分方程问题,在MATLAB中进行求解c.分析结果的准确性和稳定性二、级数实验1.了解级数的概念和性质a.简要介绍级数的定义和基本概念b.阐述级数收敛和发散的判别法c.讨论级数的性质和重要定理2.使用级数展开函数a.介绍级数展开函数的原理和步骤b.给出一个函数,使用级数展开进行近似计算c.分析级数近似计算的精确度和效果3.级数的收敛性与运算a.讨论级数收敛性的判别法b.介绍级数的运算性质和求和法则c.给出具体的例题,进行级数的运算和求和三、多元函数极值与最值实验1.多元函数的极值点求解a.介绍多元函数的极值点的定义和求解方法b.给出一个多元函数的实例,详细阐述求解过程c.分析极值点对应的函数值和意义2.多元函数的条件极值与最值a.讨论多元函数的条件极值的判定法b.给出一个具体的多元函数,求解其条件极值和最值c.分析条件极值和最值对应的函数值和意义3.利用MATLAB进行多元函数极值与最值的计算a.MATLAB求解多元函数极值与最值的基本语法和函数b.给出一个多元函数的具体问题,在MATLAB中进行求解c.分析结果的准确性和可行性四、曲线积分与曲面积分实验1.曲线积分的计算方法与应用a.介绍曲线积分的定义和计算方法b.给出一个具体的曲线积分问题,详细阐述计算过程c.分析曲线积分结果的几何意义2.曲线积分的应用举例a.讨论曲线积分在实际问题中的应用b.给出一个实际问题,使用曲线积分进行求解c.分析曲线积分结果的实际意义和应用价值3.曲面积分的计算方法与应用a.介绍曲面积分的定义和计算方法b.给出一个具体的曲面积分问题,详细阐述计算过程c.分析曲面积分结果的几何意义五、空间解析几何实验1.空间曲线的参数方程表示与性质a.介绍空间曲线的参数方程表示和性质b.给出一个具体的空间曲线,转化为参数方程表示c.分析参数方程对应的几何意义和性质2.平面与空间直线的位置关系a.讨论平面与空间直线的位置关系的判定方法b.给出一个具体的平面与空间直线的问题,判定其位置关系c.分析位置关系对应的几何意义和应用实例3.空间直线与平面的夹角和距离计算a.介绍空间直线与平面的夹角和距离的计算方法b.给出一个具体的空间直线和平面,计算其夹角和距离c.分析夹角和距离计算结果的几何意义总结:通过本次高等数学数学实验报告(二),我们深入了解了微分方程、级数、多元函数极值与最值、曲线积分、曲面积分以及空间解析几何的相关概念和应用。
数学实验四(概率论)一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布当随变量(),X B n p 时,在MATLAB 中用命令函数(,,)Px binopdf X n p =计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。
例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。
解 在MATLAB 中,输入 >>clear>> Px=binopdf(2,20,0.2) Px =0.1369即所求概率为0.1369。
2.用MA TLAB 计算泊松分布当随变量()X P λ 时,在MATLAB 中用命令函数(,)P poisspdf x lambda =计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。
用命令函数(,)P poisscdf x lambda =计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。
例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率.利用泊松分布计算. 25000.0025np λ==⋅=(1) P(保险公司亏本)= ()()15250025000(3020)1(15)10.0020.998kkkk P X P X C -=-<=-≤=-⋅∑=155051!k k e k -=-∑在MATLAB 中,输入 >> clear>> P1=poisscdf(15,5) P1 =0. 9999即 15505!k k e k -=∑= P1 =0.9999故 P(保险公司亏本)=1-0.9999=0.0001(2) P(获利不少于10万元)= ()()10102500250025000(30210)(10)0.0020.998k kk kk k P X P X CC -==-≥=≤=⋅≈∑∑ =10505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(10,5) P =0.9863即 10505!k k e k -=∑=0.9863(3) P(获利不少于20万元)= ()()525002500(30220)(5)0.0020.998k kk k P X P X C-=-≥=≤=⋅∑ =5505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(5,5) P =0.6160即 5505!k k e k -=∑= 0.61603.用MA TLAB 计算均匀分布当随机变量(),X U a b 时,在MATLAB 中用命令函数(),,P unifpdf x a b =计算在区间[],a b 服从均匀分布的随机变量的概率密度在x 处的值。
用命令函数 (),,P unifcdf X a b =计算在区间[],a b 服从均匀分布的随机变量的分布函数在X 处的值。
例3乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。
解 ()13P ξ<≤()()31P P ξξ=≤-≤ 在MATLAB 中,输入 >>p1=unifcdf(3,0,6) p1 =0.5000>>p2=unifcdf(1,0,6) p2= 0.1667 >>p1-p2 ans = 0. 3333即 ()13P ξ<≤=0.33334.用MA TLAB 计算指数分布当随变量()X E λ 时,在MATLAB 中用命令函数()exp ,P pdf x lamda =计算服从参数为λ的指数分布的随机变量的概率密度。
用命令函数()exp ,P cdf x lamda =计算服从参数为1λ-的指数分布的随机变量在区间[]0,x 取值的概率。
例4 用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少?解 由于元件寿命ξ服从参数为λ(λ=11000-)的指数分布, )1000(1)1000(≤-=>ξξP P 在MATLAB 中,输入 >>p=expcdf(1000,1000) p =0. 6321 >>1-p ans =0.3679即 )1000(1)1000(≤-=>ξξP P = 0.3679 再输入>>p2=binopdf(3,3,0.3679) p2 = 0.0498即3个这样的元件使用1000小时都未损坏的概率为0.0498。
5。
用MATLAB 计算正态分布当随变量()2,X N μσ 时,在MATLAB 中用命令函数(),,P normpdf K mu sigma =计算服从参数为,μσ的正态分布的随机变量的概率密度。
用命令函数(),,P normcdf K mu sigma =计算服从参数为,μσ的正态分布的随机变量的分布函数在K 处的值。
例5 用MA TLAB 计算:某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例?。
解 设随机变量ξ为设备寿命,由题意)2,10(~2N ξ )9(1)9(<-=≥ξξP P 在MATLAB 中,输入>>clear>> p1=normcdf(9,10,2) p1 =0. 3085 >>1-p1ans = 0.6915二.利用MATLAB 计算随机变量的期望和方差1. 用MATLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望通常,对取值较少的离散型随机变量,可用如下程序进行计算:1212[,,,];[,,,];*n n X x x x P p p p EX X P '===对于有无穷多个取值的随机变量,其期望的计算公式为:0()i i i E X x p ∞==∑可用如下程序进行计算:(,0,inf)i i EX symsum x p =例6 一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值解 将产品产值用随机变量ξ表示,则ξ的分布为:产值ξ 6 5.4 5 4 0 概率p 0.7 0.1 0.1 0.06 0.04产值的平均值为ξ的数学期望。
在MA TLAB 中,输入[]654540.ξ=; []0701*******4p .....=; '*p E ξξ= =ξE54800.即产品产值的平均值为5.48.例7 已知随机变量X 的分布列如下:{}k k X p 21== ,,2,1n k = 计算.EX解 112kk EX k∞==∑ 在MA TLAB 中,输入k syms ;inf),1,,)^2/1(*(k k k symsum=ans2即 2=EX值得注意的是,对案例3.15中简单随机变量,直接用公式计算即可,不一定使用软件计算。
(2)用MATLAB 计算连续型随机变量的数学期望若X 是连续型随机变量,数学期望的计算公式为:()EX xf x dx +∞-∞=⎰程序如下:int(*(),inf,inf)EX x f x =-例8 用MATLAB 计算:假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .解 ()1baE xf x dx xdx b aξ∞-∞==-⎰⎰ 在MA TLAB 中,输入;;b a x syms clearξE =int (b a x a b x ,,),/(-) ξE =1/2/(b-a)*(b^2-a^2)即 ξE =()/2a b +(3)用MATLAB 计算随机变量函数的数学期望若()g X 是随机变量X 的函数,则当X 为离散型随机变量且有分布律k k p x X P ==}{n k ,2,1(=或 21,=k )时,随机变量()g X 的数学期望为:0[()]()k k k E g X g x p ∞==∑其MA TLAB 计算程序为:[()](()*,0,inf)k k E g X symsum g x p =当X 为连续型随机变量且有概率密度)(x ϕ时,随机变量()g X 的数学期望为:⎰∞+∞-=dx x x g x g E )()()]([ϕ其MA TLAB 计算程序为:int(()*(),inf,inf)EX g x f x =-例9 利用MATLAB 计算:假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大?解 设y 为组织的货源数量,R 为收益,销售量为ξ.依题意有3()3()y R g y ξξξ⎧==⎨--⎩ y y ξξ≥<化简得3()4y g y ξξ⎧=⎨-⎩y y ξξ≥< 又已知销售量ξ服从[20,40]上的均匀分,即12040()20x x ξϕ⎧<<⎪=⎨⎪⎩ 其它于是 ()[()]()()E R E g g x x dx ξϕ+∞-∞==⎰40201()20g x dx =⎰ 402011(4)32020y yx y dx ydx =-+⎰⎰在MA TLAB 命令窗口输入>>;clear syms x y>>EY=1/20*(int((4*x-y),x,20,y)+int(3*y,x,y,40))结果显示1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y) 将其化简,输入命令>>simplify(1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y)) 结果显示-1/10*y^2-40+7*y再对y 在区间[]20,40上求最大值,在命令窗口输入 >>min ('1/10*^27*40',20,40)f bnd x x -+结果显示3.5000e+001即当组织35吨货源时,收益最大。