四点共圆基本判断方法
- 格式:ppt
- 大小:225.50 KB
- 文档页数:10
四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。
方法1:使用相交弧的性质假设四个点A、B、C、D共圆。
我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。
即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。
方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。
首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。
由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。
方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。
首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。
同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。
如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。
方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。
那么根据角平分线的性质,我们可以得知∠APC=∠BPD。
同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。
这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。
方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。
同样地,以BD为直径作圆,C也一定在这个圆上。
证明四点共圆的几种方法
有几种方法可以证明四点共圆,以下列举几种常见的方法:
1. 通过圆心角相等证明:如果四个点A、B、C、D共圆,可以通过证明四个圆心角相等来证明四点共圆。
具体方法是计算出∠ABC、∠BCD、∠CDA、∠DAB的度数,如果它们相等,则可以判断四个点共圆。
2. 通过等腰三角形证明:如果四个点A、B、C、D共圆,可以通过证明其中两个对角线相等的等腰三角形来证明四点共圆。
具体方法是计算出AB、BC、CD、DA的长度,如果其中任意两个对角线相等,则可以判断四个点共圆。
3. 通过垂直角相等证明:如果四个点A、B、C、D共圆,可以通过证明其中两条弦的垂直角相等来证明四点共圆。
具体方法是计算出∠ABD和∠ACD的度数,如果它们相等,则可以判断四个点共圆。
4. 通过正交性证明:如果四个点A、B、C、D共圆,可以通过证明其中两个弦的垂直平分线相交于圆心来证明四点共圆。
具体方法是计算出弦AB和弦CD的垂直平分线的斜率,如果它们的斜率相乘为-1,则可以判断四个点共圆。
这些方法只是证明四点共圆的几种常见方法,实际上还有很多其他方法可以用来证明四点共圆。
具体使用哪种方法,取决于具体问题的情况和个人的偏好。
第14课 四点共圆一、基本结论与方法:判断四点共圆的方法有:1.到定点等距离的几个点在同一个圆上;2.同斜边的直角三角形的各顶点共圆;3.同底同侧张角相等的三角形的各顶点共圆;4、如果一个四边形的一组对角互补,那么它的四个顶点共圆;5、如果四边形的一个外角等于它的内对角,则它的四个顶点共圆;6、四边形的对角线相交于点P ,且PA•PC=PB•PD,那么四个顶点共圆;7、四边形ABCD 的一组对边AB 、DC 的延长线交于点P ,若PA•PB=PC•PD, 那么四个顶点共圆.托勒密定理:圆内接四边形的对边之积的和,等于对角线之积。
即:如图,四边形ABCD 内接于圆,求证:BD AC BC AD CD AB ⋅=⋅+⋅.DB二、例题与习题例1、如图,ABCD 是等腰梯形,求证:BD 2=AB•CD+BC 2.CD 例2、△ABC 中,∠A:∠B:∠C=1:2:4,:求证:BC AC AB 111=+A D例3、在边长为1的正七边形中,对角线AD=a,BG=b,求证:22)()(ab b a b a =-+.C 例4、两圆相交于A 、B,P 是BA 延长线上一点,PCD 、PEF 分别是两圆的割线,求证:C 、D 、E 、F 四点共圆。
F例5、由圆外定直线上任意点,引圆的两条切线,求证:两切点的连线必经过某定点。
CA例6、点P 是正三角形外接圆的劣弧AB 上一点,连接PC 交AB 于D ,求证:(1)PA+PB=PC;(2)111PA PBPD +=.例7、P为△ABC内一点,D、E、F分别在三角形的边上,已知P、D、C、E四点共圆,P、E、A、F四点共圆,求证:B、D、P、F四点共圆。
例8、设凸四边形ABCD的对角线互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA 的对称点也共圆。
A例9、两个圆彼此相交,从它们的对称中心引出两条射线交圆周于不在同一直线上的四个点,证明:这四个点共圆。
例10、梯形ABCD的两条对角线相交于点K,分别以梯形的两腰围直径作圆,点K位于两圆之外,证明:由K向两圆所作的切线长度相等。
四点共圆是一个常用的知识,它除了可以灵活运用于角与角之间的等量转换外,还可以解决与圆幂定理(相交弦定理和切割线定理)相关的问题。
四点共圆的判定是个难点,现归纳总结出四点共圆的几种常用判定方法,供同学们学习参考。
一、直接找出一点到所证四点的距离相等例1如图1所示,菱形ABCD 的对角线AC 、BD 相交于点O ,四条边AB 、BC 、CD 、DA 的中点分别为E 、F 、G 、H 。
求证:E 、F 、G 、H 四点共圆。
分析:由于E 、F 、G 、H 是菱形四边中点,从菱形的性质可知:E 、F 、G 、H 应在对角线交点O 为圆心的圆上,因此可证E 、F 、G 、H 四点到O 点的距离相等即可。
图1证明:连接OE 、OF 、OG 、OH ,ȵ四边形ABCD 是菱形,ʑAB ⊥BD ,AB =BD =CD =DA 。
又ȵ在Rt △AOB 、Rt △BOC 、Rt △COD 、Rt △AOD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,ʑOE =12AB ,OF =12BC ,OG =12CD ,OH =12AD 。
又ȵAB =BC =CD =DA (已证),ʑOE =OF =OG =OH 。
ʑE 、F 、G 、H 四点共圆。
二、证明四个点构成的四边形的对角互补或外角等于内对角例2如图2所示,已知四边形ABCD 是平行四边形,过点A 和点B 的圆与AD 、BC 分别交于E 、F 点。
求证:C 、D 、E 、F 四点共圆。
分析:欲证C 、D 、E 、F 四点共圆,可证以该四点构成的四边形中,一组对角互补或外角等于内对角即可。
由此,连接EF 构成四边形EFCD 后,证明∠BFE =∠D 即可。
图2证明:连接EF ,ȵ四边形ABFE 是圆内接四边形,ʑ∠A +∠BFE =180ʎ。
又ȵ四边形ABCD 是平行四边形,ʑ∠A +∠D =180ʎ。
ʑ∠BFE =∠D 。
ʑC 、D 、E 、F 四点共圆。
4点共圆的判定介绍在平面几何中,共圆是指多个点位于同一个圆上的情况。
当给定4个点时,我们需要判断它们是否共圆。
本文将介绍判定4点共圆的方法和原理,以及具体的计算步骤和示例。
1. 方法一:使用圆的方程1.1 圆的方程圆的方程可以表示为:(x−a)2+(y−b)2=r2其中,(a, b)是圆心的坐标,r是半径的长度。
1.2 判断四点共圆的步骤1.假设给定的四个点为A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4)。
2.分别计算AB、AC、AD的中垂线的方程,得到它们的斜率和截距。
3.确定中垂线的方程后,求解得到中垂线的交点,即为圆心的坐标。
4.计算四个点到圆心的距离,如果它们的距离都相等,即满足共圆的条件。
2. 方法二:使用向量叉乘2.1 向量叉乘的性质在二维空间中,向量的叉乘可以用来判断三个点是否共线。
如果三个点A(x1, y1),B(x2, y2),C(x3, y3)共线,那么向量AB和向量AC的叉乘为0。
2.2 判断四点共圆的步骤1.假设给定的四个点为A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4)。
2.分别计算向量AB和向量AC的叉乘,以及向量AB和向量AD的叉乘。
3.如果两个叉乘的结果都为0,则四个点共圆。
3. 示例假设有四个点A(0, 0),B(1, 0),C(0, 1),D(1, 1)。
我们将使用上述两种方法来判断它们是否共圆。
3.1 使用圆的方程1.计算AB的中垂线的方程为:y = -0.5x + 0.52.计算AC的中垂线的方程为:y = 0.5x + 0.53.解方程得到两个中垂线的交点为(0.5, 0.5),即圆心的坐标。
4.计算四个点到圆心的距离,可以得到:AB = AC = AD = BD = 0.5。
因此,四个点共圆。
3.2 使用向量叉乘1.计算向量AB和向量AC的叉乘:(1-0)(1-0) - (0-0)(0-1) = 12.计算向量AB和向量AD的叉乘:(1-0)(1-0) - (0-0)(1-1) = 13.由于两个叉乘的结果都为1,因此四个点共圆。
四点共圆的四种证明方法
证明四点共圆是数学中最富有挑战性的证明。
现将四点共圆的四种证明方法做一介绍,以供参考。
首先,证明四点共圆的最直接、简单的方法就是直接应用牛顿公式。
牛顿公式定义了一个圆周上任意两点之间的平方和,可以快速证明四点在同一圆上,特别是在多边形圆周构成和四边形构成这两种情况下。
其次,可以利用射影原理证明四点共圆。
这一原理把一个大圆的一小部分映射到另一个圆表面上,证明四点共圆的关键思想是:如果四点共圆,那么只要给定两个点,就可以将剩下的点映射到圆上;否则,这两个点的另外两个相邻点就不能映射在同一个圆上。
第三种方法,可以用三点法证明更多的四边形是由四个共圆外心组成的。
在这种方法中,一般使用三点法,将一个提供的外心与另外三个圆心连线,如果三点在同一个圆内,那么四个点就必然共圆。
最后,可以使用贝塞尔三角形证明四个点是否共圆,贝塞尔三角形由两个圆心控制,根据三角形面积可以判断这三点是否在同一圆上,从而证明四点共圆。
总之,四点共圆的四种证明方法有利于我们对数学的深入研究,提升了我们的数学能力。
因此,我们要认真学习这类方法,一定可以将一个不可能变成可能。
四边形四点共圆的条件
四边形四点共圆,是一个经典的几何问题。
首先,我们需要明确四边形的定义,四边形是一个有四个顶点和四条边的多边形。
对于一个四边形,如果它的四个顶点都在同一个圆上,那么我们称这个四边形为“四点共圆的四边形”。
下面,我们来探讨一下四边形四点共圆的条件。
我们可以从反面来看这个问题,也就是什么情况下,四边形不是四点共圆的呢?我们可以发现,一个四边形不是四点共圆的情况有以下两种:
1、四边形的顶点不在同一平面上。
2、四边形的对角线相交于一点,但这个点不在四边形的外接圆上。
那么,四边形四点共圆的条件是什么呢?我们可以从不同的角度来解答这个问题。
第一种方法是通过四边形的对角线来判断。
对于一个四边形,如果它的对角线互相垂直,那么它一定是四点共圆的。
反之,如果对角线不垂直,则不一定是四点共圆的,需要其他条件的判断。
第二种方法是通过四边形的角度来判断。
对于一个四边形,如果它的相对角度之和为360度,那么它一定是四点共圆的。
反之,如果相对角度之和不为360度,则不一定是四点共圆的,需要其他条件
的判断。
第三种方法是通过四边形的边长和对角线长度来判断。
对于一个四边形,如果它的两条对角线和四条边长满足一定的关系,那么它一定是四点共圆的。
这个关系可以用勾股定理和正弦定理等几何定理来表示。
四边形四点共圆的条件有很多种,其中比较常用的有以上三种方法。
在实际问题中,我们可以根据不同的情况选择不同的方法,从而判断一个四边形是否是四点共圆的。
这个问题虽然看起来简单,但是涉及到的几何知识还是比较丰富的,需要我们认真学习和理解。
四点共圆的判定与性质之巴公井开创作一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆.2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆.3、若一个四边形的外角即是它的内对角,则这个四边形的四个点共圆.4、若两个点在一条线段的同旁,而且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆.5、同斜边的直角三角形的极点共圆.6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理).7、若AB、CD两线段延长后相交于P.且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理).8、若四边形两组对边乘积的和即是对角线的乘积,则四边形的四个极点共圆(托勒密定理的逆定理.(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆.若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上.2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆.若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆.3、若一个四边形的外角即是它的内对角,则这个四边形的四个点共圆.若∠B=∠CDE,则A、B、C、D四点共圆证法同上.4、若两个点在一条线段的同旁,而且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆.若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆.5、同斜边的直角三角形的极点共圆.如图2,若∠A=∠C=90°,则A、B、C、D四点共圆.6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理).7、若AB、CD两线段延长后相交于P.且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理).8、若四边形两组对边乘积的和即是对角线的乘积,则四边形的四个极点共圆(托勒密定理的逆定理).已知四边形ABCD,若AB×CD+BD×AC=AD×BC,则A、B、C、D四点共圆.(三)例题123二、四点共圆的性质1、共圆的四个点所连成同侧共底的两个三角形的顶角相等.2、圆内接四边形的对角互补.3、圆内接四边形的外角即是内对角.。
四点共圆的6种判定
在几何学中,我们了解到四点共圆(Four points on the same circle)是指满足给定四点能够围成一个圆形的结论。
目前存在许多不同的方法来判定一个给定的四点是否能围成一个圆形,其中最常用的有六种:
一、角平分线法:即把给定的四点连成两条边,然后计算这两条边的中点,如果这四个中点能够完成一个圆,则这四个点可以围成一个圆形。
二、垂线法:即绘制外切圆的圆心到直线ABC的三点的垂线,如果三点的垂线相交点在圆内,则四个点可以围成一个圆形。
三、外切圆法:即计算四边形的外接圆,如果外接圆的半径在最近的两段间符合要求,则四个点可以围成一个圆形。
四、三等分线法:即绘制每条边的三等分线,如果相交点都在边上,则四个点可以围成一个圆形。
五、两角平分线法:即把每条边的两个对角给定,并计算它们的中点,如果四个点能够完成一个圆,则四个点可以围成一个圆形。
六、垂直角平分线法:即计算每条边的垂直角平分线,如果相交点都在边上,则四点可以围成一个圆形。
四点共圆判定的方法由此可见,有多种途径可用于确定四点是否能够围成一个圆形,而且每种方法都有其特定优势,手动计算会比较复杂,只要用上数学公式和计算机几何处理程序,就可以完成自动判定。