第一章石油地质与勘探
- 格式:ppt
- 大小:6.40 MB
- 文档页数:47
石油天然气地质与勘探石油和天然气是世界上最重要的能源资源之一,它们从地球深处的沉积岩中提取,成为我们日常生活和工业生产中不可或缺的能源来源。
在这篇文章中,我们将探讨石油天然气地质和勘探的基本概念、技术和过程。
地质概念石油和天然气的产生和储藏与地球的地质演化密切相关。
在地质学中,存在着一种叫做油气系统的概念。
它由四个部分组成:储层、母岩、运移通道和圈闭。
储层是指石油和天然气的富集并能够储存的岩石层,如沙岩、石灰岩等。
母岩是指含有有机质的岩石层,如泥岩、煤等。
运移通道是指石油和天然气从母岩向储层运移的路径,如断层、裂缝等。
圈闭是指在储层上方覆盖有不透水的岩层,形成了“盒子”,使石油和天然气无法向上逸散。
除此之外,还有一种叫做成藏因素的概念。
它主要包括有机质、沉积环境、构造和温度压力等因素。
有机质是指在沉积环境中堆积沉淀的有机物,经过高温高压作用后会形成石油和天然气。
沉积环境与岩石的沉积、旋回和海平面变化有关。
构造指的是地质构造,如果存在构造活动,如断层、褶皱等,会形成油气运移的通道和圈闭。
温度和压力是决定有机质成熟度的重要因素,同时也会影响油气的生成和运移。
勘探技术石油和天然气的勘探需要运用一系列的技术和工具,以寻找潜在的油气藏。
以下是一些常见的勘探技术:地质勘探地质勘探是根据地球表层的形态、岩层性质、遥感图像和地球物理数据等进行分析,以确定潜在的油气藏分布区域。
地质勘探的重要工具包括地图、卫星图像、地质剖面图等。
地球物理勘探地球物理勘探是利用物理现象和探测技术,如地震勘探、重磁测勘探、电磁勘探等,对地下的地质构造和物性分布情况进行探测,从而预测油气藏的位置和规模。
钻探技术钻探技术是进行实地勘探的最后一步。
通过钻孔获取地下岩石样品和地质数据,识别潜在的油气藏和储集层特性。
勘探过程对于一个新的石油天然气勘探项目而言,其勘探流程通常包括以下步骤:区块选择在地球表层的某一区域进行区块选择,以确定潜在的油气藏分布区域。
石油地质资源评价与勘探技术随着全球经济的快速发展,对能源的需求也在不断增长。
而石油作为世界上最重要的能源之一,其地质资源的评价与勘探技术就显得尤为重要。
本文将探讨石油地质资源评价与勘探技术的相关问题。
首先,我们来谈谈石油地质资源的评价。
石油地质资源评价是指对石油资源进行可行性分析和潜力评估,以确定其存在、储备量及开采条件的一门技术。
评价的过程需要考虑多个因素,如地层条件、沉积环境、构造特征、石油成藏模式等。
首先,地层条件对石油勘探起着决定性作用。
不同地层对含油气的储集和运移有着不同的影响。
沉积环境也是评价石油资源的重要因素,因为不同的沉积环境会直接影响石油的生成和保存条件。
此外,构造特征也需要考虑,通过分析构造对石油聚集的影响,可以更好地评估石油资源的潜力。
最后,石油成藏模式的研究也是评价石油资源的重要手段,通过对成藏模式的分析,可以更准确地确定石油资源的规模和分布。
其次,我们来谈谈石油勘探技术。
石油勘探技术是指通过各种手段和方法寻找地下石油资源的过程。
传统的石油勘探技术主要包括地质勘探、地球物理勘探和地球化学勘探。
地质勘探是通过对岩石、矿物、古生物等地质现象的观察和分析,确定石油的存在证据。
地球物理勘探是通过使用地球物理仪器进行测量和观测,获取地下构造和性质信息,从而找到潜在的石油区域。
地球化学勘探则是通过采集地下岩石、土壤等样本,进行有机地球化学分析,以确定有机质的存在和分布,进而预测石油的存在。
此外,近年来,随着科技的不断进步和创新,石油勘探领域也涌现出了一系列新的技术。
其中,最值得关注的是地震勘探技术。
地震勘探技术是利用地震波在地下岩层中传播的特性,通过测量传播时间和速度,进而确定地下构造和储层等信息。
地震勘探技术以其高效、准确的优势,成为现代石油勘探的重要手段。
另外,还有垂直电子束技术(VSP)、磁共振(NMR)等高分辨率技术,也在石油勘探中得到了广泛的应用。
不可否认,石油地质资源评价与勘探技术的发展对于石油行业的可持续发展意义重大。
分析石油地质勘探与储层评价方法石油地质勘探是指通过对地下石油储层的综合研究,对石油资源进行甄别、开发、生产和管理的一项工作。
储层评价是石油勘探中的重要环节,是对储层岩石、储集层性质、储集层盖层及储集层地质结构等方面进行科学评价和分析的过程。
为了了解油藏的存在和分布情况,需要运用多种勘探和评价方法。
1、地震勘探法:利用地震波在不同介质中传播速度的差异性,对地下结构进行探测的方法,被广泛应用于石油天然气勘探领域。
地震勘探可以提供大量的关于地下构造的信息,从而识别出油气的存在和分布,确定钻探的方向和深度。
2、电磁勘探法:利用地面产生交变磁场的磁化电流在地下产生感应电流的方法,来探测地下的矿产资源分布,包括石油储量的勘探。
3、地质勘探法:通过对工作区域的地质资料进行整理、分类、分析和综合研究,确定勘探区的岩石类型、构造形态、沉积环境等信息,并通过样品分析技术和钻探技术收集和确定地层信息,来推断地下油气的分布状况。
4、测井勘探法:测井勘探法是利用钻孔对地下地层进行现场测试,通过对钻井壁呈现物理性质的变化情况,来识别油层并评价裂缝、孔渗、流体组成及储层厚度等地下特征。
二、储层评价方法:1、物性分析方法:储层性质是储量高低的关键因素,物性分析包括测量孔隙度、渗透率、孔径分布、孔隙度中的有效孔隙度及渗透率中的有效渗透率等参数。
通过对这些参数的分析,来判断储层的物性和储层的含油、含气等性质。
2、沉积相分析方法:根据沉积学原理对储集层产生影响的力量及其作用方式进行描述,确定沉积环境、沉积类型对于储层的性质及其分布的影响。
3、成因地质分析方法:通过对石油勘探区的成因地质演化过程的描述和研究,以及石油成藏的过程的认识,来掌握油气藏的空间分布、形态特征和成藏时的储层特征等方面的信息。
4、地球化学分析方法:地球化学分析是利用化学方法对地下样品进行分析,识别其中的元素和化合物,从而判断样品所含的油气和气型的成分类型和含量。
总之,在石油地质勘探和储层评价方面,多种不同的方法和技术都被应用了,通过不断的深入研究和探索,不断提高技术水平,可以更加准确地识别石油资源分布,优化勘探方案,提高石油开采的效率和生产能力。
石油勘探与地质工程技术手册一、简介石油勘探与地质工程技术手册是一个全面介绍石油勘探与地质工程技术的指南,旨在帮助读者了解石油勘探与地质工程的基本原理、方法和技术。
本手册旨在提供给石油勘探与地质工程领域的专业人士、学生和研究者,以及对该领域感兴趣的读者一个系统、全面的参考资料。
二、地质与石油勘探概述1. 地质学原理地质学是石油勘探与地质工程的基础。
本章将介绍地质学的基本原理,包括岩石类型、构造地质学、沉积地质学、石油地质学等内容。
2. 石油勘探基础石油勘探是寻找石油和天然气资源的过程。
本章将解释石油勘探的基本概念,包括勘探方法、地震测井、钻井技术等。
三、石油勘探与勘探工程技术1. 地震勘探技术地震勘探是一种常用的勘探方法,通过控制地震能量的源和接收地震波的地震探测器,在地下探测石油和天然气的分布。
本章将介绍地震勘探的原理、方法和技术。
钻井是开发石油和天然气资源的关键步骤。
本章将介绍钻井工程技术,包括钻井方法、钻井设备、钻井液等内容。
3. 测井技术测井是在钻井过程中对井眼内的地层进行测试、评估的方法。
本章将介绍测井的原理、方法和常用工具,以及如何根据测井数据解释地层的性质和石油勘探的潜力。
4. 勘探地质工程技术勘探地质工程技术是通过综合应用地质、地球物理、地球化学和数学等知识,以及计算机技术,对勘探区域进行综合分析和评价。
本章将讨论勘探地质工程技术的基本原理、方法和工具。
四、石油勘探与地质工程的应用领域1. 油田开发技术油田开发是指对已发现的石油或天然气资源进行开发、生产和管理的过程。
本章将介绍油田开发的主要技术和方法,包括油藏工程、增产技术、水处理和注水技术等。
2. 油藏评价技术油藏评价是确定油田的盈利能力和开采潜力的过程。
本章将讨论油藏评价的基本概念和方法,包括地质建模、油藏模拟、储量评估等内容。
储运工程技术是指将从油田中开采的石油和天然气输送到加工厂或用户的过程。
本章将介绍储运工程技术的基本原理和方法,包括管道输送技术、储存技术和输油泵站技术等。
石油天然气地质与勘探:矿床学的一个分支。
其主要任务是阐述石油和天然气在地壳中的形成过程、产出状态和分布规律,以及油气勘探方法和程序。
石油(天然气):是地下岩石空隙中天然生成的,以液(气)态烃为主要化学成分的可燃有机矿产。
物性参数:渗透性,空隙性。
粘滞性:流体受力发生流动时,其内部分子间有一种内摩擦力组织分子间的相对运动。
正烷烃分布曲线:不同碳原子数的正烷烃的相对含量成一条连续的曲线,称为正烷烃分布曲线。
生物标志化合物:是指来源于生物体,基本保持了原始组分的碳骨架,记载了原始生油母质特殊分子结构信息有机化合物。
荧光性:石油在紫外光的照射下,由于不饱和烃及其衍生物的存在而产生荧光的特性。
旋光性:偏振光通过石油时,石油能使其振动面片转一个角度,这种特性称为荧光性石油沥青类:天然气、石油及石油的固态衍生物,统称为石油沥青类固体沥青、石油固态衍生物:石油在热力和氧化、细菌生物化学作用下发生物理分异、化学分化及变质等次生变化的产物,包括地蜡、地沥青、石沥青等,又叫固体沥青。
气藏气:圈闭中具有一定规模的单独天然气聚集,即纯气藏中的气体,基本不与石油伴生。
气顶气:指与石油共存于油气藏中,呈游离气顶状态的天然气。
凝析气:当地下温度、压力超过临界条件后,液态烃逆蒸发而形成的气体。
煤层气:指煤层吸附气或者游离状态的自生自储的天然气,是煤化作用的产物。
主要成分为甲烷,也称为煤层甲烷(煤层瓦斯)。
溶解气:油溶气、水溶气。
固态/天然气水合物:在特定的低温和高压条件下,甲烷等气体分子天然地被封闭在水分子扩大的晶格中,形成似冰状的固态水合物,也叫天然气水合物。
饱和蒸汽压力:某一温度下,将气体液化石所需施加的最低压力油藏饱和压力:在地层条件下,原油中溶解气开始析离出来的压力饱和油藏:若有藏饱和压力与地层压力相等,即油内溶解气刚好饱和,压力稍低,就会有气体析出。
此时的油藏成为饱和油藏。
油田水:广义油田水指油气田区域(含油构造)内的地下水,包括油层水和非油层水。
一、油气勘探的理论与方法第一节油气勘探的理论一、世界油气勘探理论的形成与发展(一)初期阶段-原始找油理论(19世纪40年代以前)早期油气勘探活动中,由于人们缺乏对地质规律的认识,没有相应的理论指导,找油工作主要是依赖对自然现象的直观感觉进行的。
如利用油气苗找油,靠迷信观念布井等。
钻井的方式为顿钻及麻花钻,深度不超过500~1000公尺。
勘探方法仅限于钻井法。
勘探领域局限于油气苗附近和浅层。
缺乏地质研究,勘探效率低,成本高。
代表性成果:我国自流井气田、巴库苏拉汉、巴拉汗浅油层及中东的一些油泉和浅油层。
(二)中期阶段-圈闭找油理论(19世纪40年代至20世纪40年代)人们在长期寻找和利用石油和天然气的生产实践中,随着地学水平的提高,逐渐认识到,油气的聚集常和地下构造有关。
•找油理论1:线状分布理论--油气田呈线状分布,沿出油点的直线上找油。
这一认识对解释盐丘翼部分布的油田有效,因盐丘构造多沿断裂分布。
•找油理论2:背斜理论—石油聚集于背斜构造的顶部,沿构造等高线分布,背斜高点找油最有利。
19世纪后期,美国的怀特发表了背斜聚油的论文。
“背斜聚油理论”大大提高了油气勘探的成功率。
在“背斜论”的指导下,油气勘探由单纯依据油气显示,转为依据背斜构造。
地面地质测量寻找背斜构造成为找油的主要依据,地质家正式成为找油必不可缺少的专业人才。
1917年美国石油地质家协会成立,确立了石油地质家在油气勘探中的主导地位。
勘探领域扩大,主要为山前坳陷,山间坳陷。
在石油成因理论上,认为石油是由生物形成的有机成因理论逐渐抬头,最后占据主要地位。
该理论指导油气勘探工作已有一百多年的历史,该理论至今仍起着重要的作用。
油气勘探方法也有了很大发展,除在露头区采用地质法(地质填图找背斜)外,在覆盖区产生并逐步完善了重、磁、电、地震等地球物理勘探方法,在寻找背斜圈闭方面起了重要作用。
为在钻井中划分出油气水层,电测和地质录井方法都有了相应的发展。
第一章绪论1.地球物理勘探的概念及分类概念:利用物理学原理和相关技术获取某些地质参数、特征及变化规律, 从而对地质问题经行切实合理的分析和解释的油气勘探手段。
分类: 地震勘探、电法勘探、重力勘探、磁法勘探2.地震勘探的概念利用人工激发的地震波来定位矿藏, 确定考古位置, 获取工程地质信息的勘探方法, 它是地球物理勘探中最重要、解决油气勘探问题最有效的一种方法。
3.地震勘探的基本原理人工激发的弹性波在岩石中传播时, 遇到岩层的分界面便产生反射波或折射波, 在它们返回地面时用高灵敏度的仪器记录, 根据波的传播路程和旅行时间, 确定发生弹性波反射或折射的岩层界面的埋藏深度和形状, 从而认识地下地质构造, 寻找油气圈闭。
4.地震勘探的三个环节野外资料采集、室内资料处理、地震资料解释第二章地震波运动学理论1.基本概念●各种介质的概念(1)均匀介质与非均匀介质均匀介质: 介质内每一点的物理特性参数均相同非均匀介质: 介质内的物理特性参数随空间位置的变化而变化(2)弹性介质与非弹性介质弹性介质: 介质卸载后能够完全恢复到加载前状态非弹性介质: 卸载后不能够完全恢复到加载前状态(3)各向同性介质与各向异性介质各向同性介质: 介质参数与方向无关各向异性介质: 介质参数随方向变化而变化(4)单相与双相、多相单相: 固体、流体(油、气、水)双相: 固体骨架以及孔隙内的流体实际地下介质的特征: 非均匀、非弹性、各向异性、多相●波动、弹性波、地震波、波前、波后、波面、振动曲线(地震记录)、波形曲线(波剖面、波场快照)波动: 振动在介质中传播形成波动;弹性波: 振动在弹性介质中传播形成弹性波;地震波: 地层中传播的弹性波;波前: 在某一时刻, 介质中刚刚开始振动的点连接起来形成的面;波后:在某一时刻, 介质中刚刚停止振动的点连接起来形成的面;波面: 介质中同一时刻开始振动的点连接起来形成的曲面;振动曲线: 即地震记录, 在某一点处质点位移和时间的关系(同一点不同时刻的位移形成的曲线);波形曲线:又叫波剖面、波长快照, 某一时刻各点的位移(同一时刻各点的位移形成的曲线);●波长、视波长、速度、视速度、周期、频率波长: 波在一个振动周期内传播的距离;视波长: 不是沿波的传播方向确定的波长;速度:在沿波的传播方向上, 波在单位时间前进的距离;视速度: 不是沿波的传播方向确定的速度;周期: 波传播一个波长的距离所需要的时间;频率: 周期的倒数;●体波、面波、纵波、横波体波: 振动能够在整个介质区域内传播形成的波。