实验五 叶绿体的分离与荧光观察
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
实验二叶绿体的分离与荧光观察一、实验目的了解叶绿体分离的一般原理和方法,并熟悉应用荧光显微镜方法观察叶绿体荧光现象。
二、实验原理1、叶绿体的分离应在等渗溶液(0.35mol/L氯化钠或0.4mol/L蔗糖溶液)中进行,?以免渗透压的改变使叶绿体受到损伤。
利用差速离心法将匀浆液离心,从而使叶绿体得到分离。
分离过程最好在0〜5C的条件下进行;如果在室温下,要迅速分离和观察。
2、有些生物体内的物质受激发光照射后直接发出荧光,称为自发荧光(或直接荧光),如叶绿素的火红色荧光和木质素的黄色荧光等。
有的生物材料本身不发荧光,但它吸收荧光染料后同样也能发出荧光,这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可发桔红色荧光。
本实验利用荧光显微镜对叶绿体的荧光进行观察。
三、实验步骤1. 选取新鲜的嫩白菜叶片,洗净擦干后去除叶梗和粗脉,撕成小碎块,称3g放于玻璃研钵中,加入10ml0.35mol/LNaCI溶液,匀浆3〜5min。
2. 匀浆液用2层尼龙布过滤于50ml烧杯中。
3•将滤液平分到2个离心管中,天平配平,1000r/min下离心2min。
弃去沉淀。
4•将上清液在3000r/min下离心5min。
弃去上清,沉淀即为叶绿体。
5. 将沉淀用0.35mol/LNaCl溶液悬浮,做两张临时装片:①取一滴叶绿体悬液滴于载片上,加盖片观察;②取一滴叶绿体悬液滴于载片上,再滴加1-2滴0.01%吖啶橙荧光染料,加盖片观察:①在普通光镜下观察;②在荧光显微镜下观察:先用明视野(白炽光灯下)和用低倍镜头观察,找到适当的标本后,再转高倍镜头,并将白炽光灯转换成以汞灯激发光作光源,用暗视野观察。
6. 撕取白菜叶片下表皮一小片置于滴有清水的载片上,盖上盖玻片,在普通光镜下观察气孔的形状,保卫细胞里面的叶绿体;随后转置荧光显微镜下观察。
四、结果与分析参考文献《细胞生物学实验》李玲李雪峰着湖南科学技术出版社百度文库《叶绿体的分离与荧光观察》。
山东大学实验报告2013年3月12 日姓名李某某系年级同组者科目细胞生物学实验题目叶绿体的分离、纯化与荧光观察学号201100140000【实验目的】1、通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法;2、观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法。
【实验原理】1.叶绿体分离原理匀浆破碎细胞,利用差速离心方法分离等渗介质中的悬浮颗粒,收集类叶绿体大小的颗粒,得到叶绿体。
差速离心:颗粒在离心场中的沉降速度取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的密度有关。
在一给定的离心场中,同一时间内,密度和颗粒大小不同的颗粒其沉降速度不同,先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。
叶绿体的分离应在等渗溶液中(0.35mol/L的氯化钠或0.4mol/L的蔗糖溶液)进行,以免渗透压的改变使叶绿体受到损伤。
分离过程最好在0~5℃的条件下进行,如果在室温下,要迅速分离和观察。
2、差速离心特点:1.介质密度均一;2.速度由低到高,逐级离心。
用途:分离大小相差悬殊的细胞核、细胞器。
沉降顺序:细胞核—线粒体—溶酶体与过氧化物酶体—内质网与高尔基体—核蛋白体。
可将细胞器逐步分离,常需进一步通过密度梯度离心再行分离纯化。
3、密度梯度离心密度梯度离心是用一定的介质在离心管内形成连续的密度梯度,将细胞悬浮液或匀浆置于介质的顶部,通过离心力的作用使细胞或细胞器分层、分离,最后不同密度的细胞或细胞器位于与自身密度相同的沉降区带中,这种离心技术又可分为速度沉降和等密度沉降两种,速度沉降主要用来分离密度相近而大小不同的物体,而等密度沉降用于分离密度不同的物体。
叶绿体是植物细胞所特有的能量转换细胞器,光合作用就是在叶绿体中进行的,由于具有这一重要功能,所以它一直是植物生物学、细胞生物学和分子生物学的重要研究对象,叶绿体是一种比较大的细胞器,利用差速离心即可分离收集,然后用密度梯度离心纯化,便可用于各种研究。
叶绿体的分离纯化及荧光观察叶绿体是植物细胞中的一种细胞器,它是进行光合作用的主要场所。
叶绿体具有一定的自复制能力,可以独立分离出来,纯化叶绿体样品可以方便地进行进一步的实验研究。
本文将详细介绍叶绿体的分离、纯化以及荧光观察的方法。
一、叶绿体的分离1.实验材料准备为了分离叶绿体,我们需要充足的植物组织样品。
可以选择新鲜的叶片或者细胞培养物作为实验材料。
同时,需要准备好一系列试剂,例如缓冲液、葡萄糖、EDTA、PEG等。
2.组织破碎和提取液的准备首先,将植物组织样品冷冻在液态氮中,然后用超声波处理器将样品破碎。
接下来,将破碎的样品用缓冲液溶解,加入适量的葡萄糖和EDTA。
将溶解后的样品在低温条件下离心,然后取出上清液。
3.叶绿体的沉淀将提取液中的上清液用PEG逐渐沉淀叶绿体。
首先加入PEG溶液,并轻轻搅拌。
然后,将样品在低温条件下离心,离心后会出现一个绿色的沉淀。
这个沉淀就是叶绿体。
4.叶绿体的洗涤和纯化将叶绿体的沉淀用缓冲液洗涤数次,然后用离心将叶绿体沉淀下来。
最后,将沉淀的叶绿体用缓冲液悬浮,即可得到纯化的叶绿体样品。
二、叶绿体的荧光观察1.荧光探针的准备为了观察叶绿体的荧光,我们需要准备好合适的荧光探针。
通常使用的探针有二苯基苯酚(DPBF)和二聚(4-乙基-5-(4-甲基吡啶氧基)-2-溴脱氧葡萄糖(DAB)等。
2.荧光探针的添加将纯化的叶绿体置于含有荧光探针的溶液中,静置一段时间。
荧光探针会与叶绿体中的一些分子发生作用,从而产生荧光。
3.荧光观察使用荧光显微镜观察叶绿体的荧光。
将样品放置于荧光显微镜下,设置合适的激发波长和观察波长。
然后观察荧光显微镜中的图像,即可看到叶绿体的荧光。
4.结果分析通过观察叶绿体的荧光,可以得到关于叶绿体活性和光合作用效率的信息。
例如,如果观察到荧光强度较高,可以推测叶绿体的光合作用效率较低。
总结:叶绿体的分离、纯化及荧光观察是研究植物生物学和光合作用的重要方法之一、通过正确的操作流程和合适的实验材料,可以得到纯化的叶绿体样品,并通过荧光观察了解叶绿体的活性和光合作用效率。
叶绿体的分离与荧光观察实验报告好嘞,今天咱们聊聊叶绿体的分离与荧光观察实验,这可是个既有趣又有点神秘的过程哦。
叶绿体是植物细胞里一个特别重要的小家伙,简直就是植物的太阳能工厂。
它们把阳光转化为化学能,简直像是大自然的魔法师。
今天的实验就围绕着这些小精灵来展开,让我们一起揭开它们的神秘面纱。
咱们得准备好一些材料。
可以用菠菜叶,没错,就是那种绿色的、看起来特别健康的叶子。
选几片新鲜的,感觉就像是在挑选食材一样。
咱们要把这些菠菜叶用刀剪成小块,动作要轻柔点,别把自己给划了,嘿嘿。
剪好之后,准备一个清水盆,把这些小叶子泡进去,让它们稍微放松放松,感受一下水的滋润。
水是生命之源,没错!然后,咱们得准备一台榨汁机,嗯,没错,就是那种能把东西变成液体的机器。
把泡过水的菠菜叶放进榨汁机,倒点水,加点冰块,嘿,榨汁的时候声音可真像在开派对!随着咕噜咕噜的声音,菠菜叶就变成了一杯绿色的汁液,看看这颜色,真是好看得不得了。
这可不是普通的绿色,里面有丰富的叶绿素,嗯,想想都让人开心。
咱们要把这杯绿色汁液过滤一下,把渣滓都捞出来。
用个细网筛或者纱布都行,慢慢来,别心急,毕竟好东西要慢慢来嘛。
过滤完之后,剩下的就是一杯清澈的绿色液体,咳咳,真想来一口,当然不能喝,实验可不能马虎。
现在到了最激动人心的时刻了!准备好荧光显微镜,哇,听上去就让人心跳加速。
把过滤后的液体滴到显微镜的载玻片上,咱们得轻轻地盖上盖玻片,像是在给小家伙们盖被子一样。
然后,把它放在显微镜下,慢慢转动镜头,哇,果然不负所望!当你看到那些小小的叶绿体在光下闪闪发光,简直就像星星在夜空中一闪而过,太美了,心里那个美呀,简直不敢相信自己的眼睛。
荧光显微镜真是个神奇的玩意儿,能让咱们看到那些肉眼看不见的东西,真是太酷了。
叶绿体在荧光下,仿佛是穿上了闪亮的衣服,优雅地在液体中游动,感觉它们都在跟你打招呼呢。
想想看,平时它们在叶子里默默工作,这次终于被我们发现了,心里别提多得意了。
叶绿体的分离及荧光观察XXX,YYY,ZZZ一、实验目的:1通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法2观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法二、实验原理:将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
一个颗粒在离心场中的沉降速度取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的黏度有关。
在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速率不同。
以此增加离心力和离心时间,就能使非均一悬浮液中的颗粒按其大小、密度先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。
叶绿体分离应在等渗溶液中进行,以免渗透压改变使叶绿体损伤。
将匀浆在1000r/min 的条件下离心2分钟,以除去其中的组织残渣和未被破碎的完整细胞。
然后,在3000r/min 的条件下离心5min,即可获得沉淀的叶绿体。
分离过程最好在0~5℃的条件下进行;如果在室温下,要迅速分离和观察。
利用荧光显微镜对可发荧光的物质进行检测时,受到许多因素的影响,如温度、光、淬灭剂等。
因此在荧光观察时应抓紧时间,有必要时立即拍照,;另外,在制作荧光显微镜标本时最好使用无荧光载玻片、盖玻片和无荧光油。
三、实验用品:1、材料:新鲜菠菜2、试剂:0.35mol/L氯化钠溶液、0.01%吖啶橙。
3、器材:离心机、组织捣碎机、粗天平、荧光显微镜、盖玻片、载玻片、烧杯等四、实验步骤:1、叶绿体的分离与观察:(1)取新鲜的嫩菠菜叶,洗净擦干后去除叶梗,称30g于150mL0.35mol/L NaCl溶液中,装入组织捣碎机。
(2)利用组织捣碎机低速(5000r/min)匀浆3~5分钟。
(3)将匀浆用六层纱布过滤于500mL烧杯中。
(4)取滤液4ml在1000r/min下离心2分钟。
弃去沉淀。
(5)将上清液在3000r/min下离心5min。
弃去上清液,沉淀即为叶绿体(混有部分细胞核)。
(6)将沉淀用0.35mol/L氯化钠溶液悬浮。
叶绿体的分离与荧光观察姓名:学号:实验时间:2014.11.181.实验目的(1)通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法。
(2)观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法。
2.实验原理叶绿体是植物细胞所特有的能量转换细胞器,光合作用就是在叶绿体中进行的。
由于具有这一重要功能,所以它一直是细胞生物学、遗传学和分子生物学的重要研究对象。
叶绿体是植物细胞中较大的一种细胞器,利用低速离心即可分离集中进行各种研究。
将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
一个颗粒在离心场中的沉降速率取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的粘度有关。
在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速率不同。
依次增加离心力和离心时间,就能够使非均一悬浮液中的颗粒按其大小、密度先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。
沉降顺序为:细胞核、线粒体、溶酶体与过氧化氢酶体、内质网与高尔基体、核蛋白体。
叶绿体的分离应在等渗溶液(0.35 mol/L氯化钠或0.4 mol/L蔗糖溶液)中进行.以免渗透压的改变使叶绿体受到损伤。
将匀浆液在1000 r/min的条件下离心2min,以去除其中的组织残渣和一些未被破碎的完整细胞。
然后,在3000 r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。
分离过程最好在0~5℃的条件下进行;如果在室温下,要迅速分离和观察。
荧光显微术是利用荧光显微镜对可发荧光的物质进行观测的一种技术。
某些物质在一定短波长的光(如紫外光)的照射下吸收光能进入激发态,从激发态回到基态时,就能在极短的时间内放射出比照射光波长更长的光(如可见光),这种光就称为荧光。
若停止供能荧光现象立即停止。
有些生物体内的物质受激发光照射后可直接发出荧光,称为自发荧光(或直接荧光),如叶绿素的火红色荧光和木质素的黄色荧光等。
有的生物材料本身不发荧光,但它吸收荧光染料后同样也能发出荧光.这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可发桔红色荧光。
叶绿体的分离与荧光观察一)实验目的:1.通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法。
2.观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法。
二)实验原理:细胞器分离的过程包括两个主要阶段:破碎细胞和细胞组分的分离。
在等渗溶液中进行组织匀浆、分离,叶绿体的分离采用差速离心或密度梯度离心法进行。
利用荧光显微镜观察叶绿体的自发荧光和间接荧光(次生/诱发荧光)。
离心分离技术是分离细胞组分和生物大分子最常用的分离方法,因为不同的细胞器和分子有不同的体积和密度,可在不同离心力不同介质沉降分离。
吖啶橙是一种与DNA和RNA都能结合的荧光染料,在紫外光或蓝光(330~485nm)激发下,DNA可被激发出530nm的荧光发射峰(细胞核发亮绿色荧光),RNA可被激发出640nm 的荧光发射峰(核仁和胞质RNA发桔红色荧光)。
产生两种不同荧光是由于吖啶橙与双链DNA 和单链DNA或RNA的结合方式和结合量不同而决定的。
DNA是高度聚合物,它与DNA结合是潜入双链之间,结合量相对少;而与单链DNA或RNA的结合则由静电吸引堆积在磷酸根上,结合量相对多些。
我们推测,叶绿体的次生荧光的来由,大部分来自叶绿体的吸附作用,极少部分来自叶绿体中的RNA.三)实验用品材料:菠菜叶片试剂:蒸馏水,0.35mol/L氯化钠溶液,0.01%吖啶橙(AO)仪器:普通离心机,组织捣碎机,天平,荧光显微镜,显微镜,镊子,培养皿,纸,移液管,滴管,烧杯,无荧光载片,盖玻片,离心管,吸水纸等四)实验步骤:1、叶绿体悬浮液的制备菠菜叶片(去叶脉)3g → 0.35mol/L氯化钠15ml→研磨→匀浆过滤(6层纱布)→滤液在1000r/min离心2min→弃沉淀,上清液3000r/min离心5min →去上清液→沉淀为叶绿体(混有部分细胞核),用0.35mol/L氯化钠溶液悬浮→滴片观察2、叶绿体的显微与荧光观察取叶绿体悬液1滴置于载玻片上,加盖玻片后用分别用普通光学显微镜观察叶绿体的形态结构和荧光显微镜观察自发荧光。
叶绿体的分离、纯化及荧光观察实验报告一、实验目的1、通过植物细胞叶绿体的分离与纯化,了解细胞器分离与纯化的原理和方法.2、熟悉荧光显微镜的使用方法,观察叶绿体的自发荧光和间接荧光。
二、实验原理将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
一个颗粒在离心场中的沉降速率取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的粘度有关.通过控制离心力和离心时间等因素,不同的细胞器可以通过阶梯离心的方式得到分离。
在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速度不同。
依次增加离心力和离心时间,就能够使非均一悬浮中的颗粒按其大小、密度先后分批沉降在离心管底部.分批收集即可获得各种亚细胞组分。
叶绿体是植物细胞中较大的一种细胞器,利用低速离心即可分离集中进行各种研究。
叶绿体的分离应在等渗溶液(0。
35mol/L氯化钠或0.4mol/L蔗糖溶液)中进行,以免渗透压的改变使叶绿体受到损伤。
将匀浆液在1000r/min的条件下离心2min,以去除其中的组织残渣和一些未被破碎的完整细胞。
然后,3000r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。
分离过程最好在0—5℃的条件下进行:如果在室温下,要迅速分离和观察。
荧光显微术是利用荧光显微镜对可发荧光的物质进行观察的一种技术。
某些物质在—定短波长的光(如紫外光)的照射下吸收光能进入激发态,从激发态回到基态时,就能在极短的时间内放射出比照射光波长更长的光(如可见光),这种光就称为荧光.若停止供能荧光现象立即停止。
有些生物体内的物质受激发光照射后直接发出荧光,称为自发荧光(或直接荧光),如叶绿素的火红色荧光和水质素的黄色荧光等。
有的生物材料本身不发荧光,但它吸收荧光染料后同样也能发出荧光,这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可发桔红色荧光。
叶绿素吸收的光能主要用于光合作用.多余的能量可能以热的形式散发,也可能以激发光的形式散发。
实验五叶绿体的分离与荧光观察
叶绿体是植物细胞所特有的能量转换细胞器,光合作用就是在叶绿体中进行的。
由于具有这一重要功能,所以它一直是细胞生物学、遗传学和分子生物学的重要研究对象。
叶绿体是植物细胞中较大的一种细胞器,利用低速离心即可分离集中进行各种研究。
实验目的
一、通过植物细胞叶绿体的分离,了解细胞器分离的一般原理和方法。
二、观察叶绿体的自发荧光和次生荧光,并熟悉荧光显微镜的使用方法。
实验原理
将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。
一个颗粒在离心场中的沉降速率取决于颗粒的大小、形状和密度,也同离心力以及悬浮介质的粘度有关。
在一给定的离心场中,同一时间内,密度和大小不同的颗粒其沉降速率不同。
依次增加离心力和离心时间,就能够使非均一悬浮液中的颗粒按其大小、密度先后分批沉降在离心管底部,分批收集即可获得各种亚细胞组分。
叶绿体的分离应在等渗溶液(0.35 mol/L氯化钠或0.4 mol/L蔗糖溶液)中进行.以免渗透压的改变使叶绿体受到损伤。
将匀浆液在1000 r/min的条件下离心2min,以去除其中的组织残渣和一些未被破碎的完整细胞。
然后,在3000 r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。
分离过程最好在0~5℃的条件下进行;如果在室温下,要迅速分离和观察。
荧光显微术是利用荧光显微镜对可发荧光的物质进行观测的一种技术。
某些物质在一定短波长的光(如紫外光)的照射下吸收光能进入激发态,从激发态回到基态时,就能在极短的时间内放射出比照射光波长更长的光(如可见光),这种光就称为荧光。
若停止供能荧光现象立即停止。
有些生物体内的物质受激发光照射后可直接发出荧光,称为自发荧光(或直接荧光),如叶绿素的火红色荧光和木质素的黄色荧光等。
有的生物材料本身不发荧光,但它吸收荧光染料后同样也能发出荧光.这种荧光称为次生荧光(或间接荧光),如叶绿体吸附吖啶橙后可发桔红色荧光。
利用荧光显微镜对可发荧光的物质进行检测时,将受到许多因素的影响,如温度、光、淬灭剂等。
因此在荧光观察时应抓紧时间.有必要时立即拍照。
另外,在制作荧光显微标本时最好使用无荧光载片、盖片和无荧光油。
实验用品
一、器材
1.主要设备:普通离心机、组织捣碎机、粗天平、荧光显微镜。
2.小型器材:500ml烧杯2个,250ml量筒1个,滴管10支,10ml刻度离心管20支,纱布若干,无荧光载片和盖片各4片。
二、材料
新鲜菠菜。
三、试剂
0.35 mol/L氯化钠溶液,.0.01%吖啶橙(acridine orange)。
实验方法
一、叶绿体的分离与观察
1. 选取新鲜的嫩菠菜叶,洗净擦干后去除叶梗及粗脉,称30g于150ml 0.35 mol/L NaCI
溶液中,装入组织捣碎机。
2. 利用组织捣碎机低速(5 000 r/min)匀浆3~5min。
3. 将匀浆用6层纱布过滤于500ml烧杯中。
4. 取滤液4ml在1000 r/min下离心2 min。
弃去沉淀。
5. 将上清液在3000 r/min下离心5min,弃去上清液,沉淀即为p为叶绿体(混有部分细
胞核)。
6. 将沉淀用0.35 mol/L NaCl溶液悬浮。
7. 取叶绿体悬液一滴滴于载片上,加盖片后即可在普通光镜和荧光显微镜下观察。
①在普通光镜下观察。
②在荧光显微镜下观察。
③取叶绿体悬液一滴滴在无荧光载片上,再滴加一滴0.01%吖啶橙荧光染料,加无
荧光盖片后即可在荧光显微镜下观察。
二、菠菜叶手切片观察
用剃须刀将新鲜的嫩菠菜叶切削一斜面置于载片上,滴加1~2滴0.35mol/L NaCl 溶液,加盖片后轻压,置显微镜下观察。
①在普通光镜下观察。
②在荧光显微镜下观察。
③用同样方法制片,但滴加1~2滴0.01%吖啶橙染液染色l min,洗去余液,加盖
片后即可在荧光显微镜下观察。
实验结果
一、叶绿体的分离和观察
1. 普通光镜下,可看到叶绿体为绿色橄榄形,在高倍镜下可看到叶绿体内部含有较深的
绿色小颗粒,即基粒。
2. 以Olympus荧光显微镜为例,在选用B(blue)激发滤片、B双色镜和0ss。
(orange)阻断
滤片的条件下,叶绿体发出火红色荧光。
3. 加入吖啶橙染色后,叶绿体可发出桔红色荧光,而其中混有的细胞核则发绿色荧光。
二、菠菜叶手切片观察
1. 在普通光镜下可以看到三种细胞
(1) 表皮细胞:为边缘呈锯齿形的鳞片状细胞。
(2) 保卫细胞:为构成气孔的成对存在的肾形细胞。
(3) 叶肉细胞:为排成栅状的长形和椭圆形细胞。
‘
叶绿体呈绿色橄榄形,在高倍镜下还可以看到绿色的基粒。
2. 在荧光显微镜下,叶绿体发出火红色荧光,但其荧光强度要比游离叶绿体弱。
气孔发绿
色荧光,两保卫细胞内的火红色叶绿体则环绕气孔排列成一圈,表皮细胞内叶绿体数量要比叶肉细胞少。
3. 用吖啶橙染色后,叶绿体则发出桔红色荧光,细胞核可发出绿色荧光,气孔仍为绿色。
作业
1. 在普通光镜下,用目微尺和台微尺测量一下叶绿体的长轴和短轴,分别测量5~l0个叶
绿体,求其平均值。
2. 在荧光显微镜下观察叶绿体的自发荧光时,更换滤片系统,叶绿体的颜色是否有变化?
3. 游离叶绿体和整体细胞内的叶绿体,在荧光显微镜下,其颜色和强度有无差异?为什么?
思考题
1. 叶绿体分离的实验原理是什么?在分离叶绿体时应注意些什么问题?
2. 普通光镜与荧光显微镜有何异同点?。