2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角斜率与直线方程课件文201809101119
- 格式:pdf
- 大小:7.18 MB
- 文档页数:43
基础知识整合1.直线的倾斜角与斜率(1)直线的倾斜角1定义:x轴错误!正向与直线错误!向上的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为错误!0°.2倾斜角的范围为错误!0°≤α<180°.(2)直线的斜率1定义:一条直线的倾斜角α的错误!正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=错误! tanα,倾斜角是90°的直线斜率不存在.2过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=错误!错误!.2.直线方程的几种形式直线的斜率k与倾斜角θ之间的关系θ0°0°<θ<90°90°90°<θ<180°k0k>0不存在k<0牢记口诀:“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.1.已知直线过A(2,4),B(1,m)两点,且倾斜角为45°,则m=()A.3B.—3C.5D.—1答案A解析∵直线过A(2,4),B(1,m)两点,∴直线的斜率为错误!=4—m.又∵直线的倾斜角为45°,∴直线的斜率为1,即4—m=1,∴m=3.故选A.2.直线x+错误!y+1=0的倾斜角是()A.错误!B.错误!C.错误!D.错误!解析由直线的方程得直线的斜率k=—错误!,设倾斜角为α,则tanα=—错误!,所以α=错误!.3.(2019·青海模拟)倾斜角为135°,在y轴上的截距为—1的直线方程是()A.x—y+1=0 B.x—y—1=0C.x+y—1=0 D.x+y+1=0答案D解析直线的斜率为k=tan135°=—1,所以直线方程为y=—x—1,即x+y+1=0.4.已知直线l:ax+y—2—a=0在x轴和y轴上的截距相等,则a的值是()A.1B.—1C.—2或—1D.—2或1答案D解析当a=0时,直线方程为y—2=0,不满足题意,所以a≠0,直线在x轴上的截距为错误!,在y 轴上的截距为2+a,则由2+a=错误!,得a=—2或a=1.5.(2019·沈阳模拟)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<0答案A解析由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=—错误!x—错误!.易知—错误!<0且—错误!>0,故ab>0,bc<0.6.(2019·海淀区模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(—3,3),则其斜率的取值范围是()A.—1<k<错误!B.k>1或k<错误!C.k>错误!或k<1D.k>错误!或k<—1解析设直线的斜率为k,则直线方程为y—2=k(x—1),直线在x轴上的截距为1—错误!,令—3<1—错误!<3,解不等式可得.也可以利用数形结合.核心考向突破考向一直线的倾斜角与斜率例1(1)(2019·重庆巴蜀中学诊断)直线x+(a2+1)y+1=0的倾斜角的取值范围是()A.错误!B.错误!C.错误!∪错误!D.错误!∪错误!答案B解析依题意,直线的斜率k=—错误!∈[—1,0),因此其倾斜角的取值范围是错误!.(2)直线l过点P(1,0),且与以A(2,1),B(0,错误!)为端点的线段有公共点,则直线l斜率的取值范围为________.答案(—∞,—错误!]∪[1,+∞)解析如图,∵kAP=错误!=1,kBP=错误!=—错误!,∴k∈(—∞,—错误!]∪[1,+∞).触类旁通即时训练1.(2019·南昌模拟)直线2xcosα—y—3=0错误!的倾斜角的变化范围是()A.错误!B.错误!C.错误!D.错误!答案B解析直线2xcosα—y—3=0的斜率k=2cosα.由于α∈错误!,所以错误!≤cosα≤错误!,因此k=2cosα∈[1,错误!].设直线的倾斜角为θ,则有tanθ∈[1,错误!].由于θ∈[0,π),所以θ∈错误!,即倾斜角的变化范围是错误!.2.设点A(—2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是()A.错误!∪错误!B.错误!C.错误!D.错误!∪错误!答案B解析易知直线ax+y+2=0过定点P(0,—2),kPA=—错误!,kPB=错误!,因为直线ax+y+2=0的斜率为—a,若直线ax+y+2=0与线段AB没有交点,根据图象(图略)可知—错误!<—a<错误!,解得—错误!<a<错误!,故选B.考向二求直线的方程例2根据所给条件求直线的方程:(1)直线过点(—4,0),倾斜角的正弦值为错误!;(2)直线过点(—3,4),且在两坐标轴上的截距之和为12;(3)与直线3x—4y—5=0关于y轴对称.解(1)由题设知该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sinα=错误!(0<α<π),从而cosα=±错误!,则k=tanα=±错误!,故所求直线方程为y=±错误!(x+4),即x+3y+4=0或x—3y+4=0.(2)由题设知截距不为0,设直线方程为错误!+错误!=1,又直线过点(—3,4),从而错误!+错误!=1,解得a=—4或a=9.故所求直线方程为4x—y+16=0或x+3y—9=0.(3)直线3x—4y—5=0与y轴的交点为A错误!,所求直线过A错误!,且斜率k=—错误!,所求直线方程为y=—错误!x—错误!,即3x+4y+5=0.触类旁通根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性.即时训练3.已知△ABC的三个顶点分别为A(—3,0),B(2,1),C(—2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.解(1)因为直线BC经过B(2,1)和C(—2,3)两点,由两点式得BC的方程为错误!=错误!,即x+2y—4=0.(2)设BC边的中点D的坐标为(x,y),则x=错误!=0,y=错误!=2.BC边的中线AD过点A(—3,0),D(0,2)两点,由截距式得AD所在直线方程为错误!+错误!=1,即2x—3y+6=0.(3)由(1)知直线BC的斜率k1=—错误!,则直线BC的垂直平分线DE的斜率k2=2.由(2)知点D的坐标为(0,2).可求出直线的点斜式方程为y—2=2(x—0),即2x—y+2=0.考向三直线方程的应用角度错误!直线方程与不等式的结合例3已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,当△ABO的面积取最小值时,求直线l的方程.解解法一:设A(a,0),B(0,b)(a>0,b>0),则直线l的方程为错误!+错误!=1.因为l过点P(3,2),所以错误!+错误!=1.因为1=错误!+错误!≥2错误!,整理得ab≥24,所以S△ABO=错误!ab≥12.当且仅当错误!=错误!,即a=6,b=4时取等号.此时直线l的方程是错误!+错误!=1,即2x+3y—12=0.解法二:依题意知,直线l的斜率k存在且k<0,可设直线l的方程为y—2=k(x—3)(k<0),则A错误!,B(0,2—3k),S△ABO=错误!(2—3k)错误!=错误!错误!≥错误!错误!=错误!×(12+12)=12,当且仅当—9k=错误!,即k=—错误!时,等号成立.所以所求直线l的方程为2x+3y—12=0.角度错误!直线方程与函数的结合例4为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?解如图所示,以A为坐标原点建立平面直角坐标系,则E(30,0),F(0,20),∴直线EF的方程为错误!+错误!=1(0≤x≤30).易知当矩形草坪的一个顶点在EF上时,可取最大值,在线段EF上取点P(m,n),作PQ⊥BC于点Q,PR⊥CD于点R,设矩形PQCR的面积为S,则S=|PQ|·|PR|=(100—m)(80—n).又错误!+错误!=1(0≤m≤30),∴n=20—错误!m.∴S=(100—m)错误!=—错误!(m—5)2+错误!(0≤m≤30).∴当m=5时,S有最大值,这时错误!=5∶1.所以当草坪矩形的两边在BC,CD上,一个顶点在线段EF上,且这个顶点分有向线段EF成5∶1时,草坪面积最大.触类旁通直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x,y的关系,将问题转化为关于x (或y)的函数,借助函数的性质解决.2与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识如方程解的个数、根的存在问题,不等式的性质、基本不等式等来解决.即时训练4.已知直线l过点M(1,1),且与x轴、y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.解(1)设A(a,0),B(0,b)(a>0,b>0).设直线l的方程为错误!+错误!=1,则错误!+错误!=1,所以|OA|+|OB|=a+b=(a+b)错误!=2+错误!+错误!≥2+2错误!=4,当且仅当“a=b=2”时取等号,此时直线l的方程为x+y—2=0.(2)设直线l的斜率为k,则k<0,直线l的方程为y—1=k(x—1),则A错误!,B(0,1—k),所以|MA|2+|MB|2=错误!2+12+12+(1—1+k)2=2+k2+错误!≥2+2错误!=4,当且仅当k2=错误!,即k=—1时,|MA|2+|MB|2取得最小值4,此时直线l的方程为x+y—2=0.。
第1讲 直线的倾斜角与斜率、直线的方程在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. 能根据两条直线的斜率判定这两条直线平行或垂直.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的取值范围是[0,π). 2.直线的斜率判断正误(正确的打“√”,错误的打“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)经过点P 0(2,-3),倾斜角为45°的直线方程为( ) A .x +y +1=0 B .x +y -1=0 C .x -y +5=0D .x -y -5=0解析:选D .由点斜式得直线方程为y -(-3)=tan 45°(x -2)=x -2,即x -y -5=0,故选D.如果AC <0,BC <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C.由题意知直线的斜率k =-A B <0,直线在y 轴上的截距b =-C B>0,故选C. 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =________. 解析:tan 3π4=2y +1-(-3)4-2=2y +42=y +2,因此y +2=-1,y =-3. 答案:-3(教材习题改编)经过点(-4,3)且在两坐标轴上的截距相等且不过原点的直线方程为________.解析:由题意可设方程为x +y =a , 所以a =-4+3=-1. 所以直线方程为x +y +1=0. 答案:x +y +1=0直线的倾斜角与斜率[典例引领](1)直线2xcos α-y -3=0⎝⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)已知直线l :x -my +3m =0上存在点M 满足与两点A (-1,0),B (1,0)连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( ) A .[-6, 6] B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞。
2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文的全部内容。
第1讲直线的倾斜角、斜率与直线方程一、选择题1.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )A.4x-3y-3=0 B.3x-4y-3=0C.3x-4y-4=0 D.4x-3y-4=0解析:选D.由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l:x-2y-2=0的斜率为错误!,则tan α=错误!,所以直线l的斜率k=tan 02α=错误!=错误!=错误!.所以由点斜式可得直线l的方程为y-0=错误!(x-1),即4x-3y-4=0.2.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc〉0 D.ab〈0,bc<0解析:选A.由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-错误!x-错误!.易知-错误!〈0且-错误!〉0,故ab>0,bc〈0.3.两直线错误!-错误!=a与错误!-错误!=a(其中a为不为零的常数)的图象可能是( )解析:选B.直线方程错误!-错误!=a可化为y=错误!x-na,直线错误!-错误!=a可化为y=错误!x-ma,由此可知两条直线的斜率同号.4.已知直线x+a2y-a=0(a〉0,a是常数),当此直线在x,y轴上的截距之和最小时,a的值是( )A.1 B.2 C.错误!D.0解析:选A.直线方程可化为xa+错误!=1,因为a>0,所以截距之和t=a+错误!≥2,当且仅当a=错误!,即a=1时取等号.5.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是()A.[-2,2]B.(-∞,-2]∪[2,+∞)C.[-2,0)∪(0,2]D.(-∞,+∞)解析:选C.令x=0,得y=错误!,令y=0,得x=-b,所以所求三角形的面积为错误!错误!|-b|=错误!b2,且b≠0,错误!b2≤1,所以b2≤4,所以b的取值范围是[-2,0)∪(0,2].6.若直线错误!+错误!=1(a>0,b>0)过点(1,1),则a+b的最小值等于( )A.2 B.3C.4 D.5解析:选C.将(1,1)代入直线错误!+错误!=1,得错误!+错误!=1,a >0,b>0,故a+b=(a+b)(错误!+错误!)=2+错误!+错误!≥2+2=4,等号当且仅当a=b时取到,故选C.二、填空题7.直线l过原点且平分▱ABCD的面积,若平行四边形的两个顶点为B (1,4),D(5,0),则直线l的方程为________.解析:直线l平分平行四边形ABCD的面积,则直线l过BD的中点(3,2),则直线l:y=23 x.答案:y=错误!x8.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.解析:(1)当直线过原点时,直线方程为y=-错误!x;(2)当直线不过原点时,设直线方程为错误!+错误!=1,即x-y=a.代入点(-3,5),得a=-8.即直线方程为x-y+8=0.答案:y=-53x或x-y+8=09.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.解析:直线l的方程变形为a(x+y)-2x+y+6=0,由{x+y=0,,-2x+y+6=0解得x=2,y=-2,所以直线l恒过定点(2,-2).答案:(2,-2)10.已知直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则实数m的取值范围是____________.解析:设M(x,y),由k MA·k MB=3,得错误!·错误!=3,即y2=3x2-3.联立错误!得错误!x2+错误!x+6=0.要使直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则Δ=错误!错误!-24错误!≥0,即m2≥错误!.所以实数m的取值范围是错误!∪错误!.答案:错误!∪错误!三、解答题11.已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(-3,4);(2)斜率为错误!.解:(1)设直线l的方程为y=k(x+3)+4,它在x轴,y轴上的截距分别是-错误!-3,3k+4,由已知,得(3k+4)×错误!=±6,解得k1=-错误!或k2=-错误!.故直线l的方程为2x+3y-6=0或8x+3y+12=0.(2)设直线l在y轴上的截距为b,则直线l的方程是y=16x+b,它在x轴上的截距是-6b,由已知,得|-6b·b|=6,所以b=±1.所以直线l的方程为x-6y+6=0或x-6y-6=0.12.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=错误!x 上时,求直线AB的方程.解:由题意可得k OA=tan 45°=1,k OB=tan(180°-30°)=-错误!,所以直线l OA:y=x,l OB:y=-错误!x.设A(m,m),B(-3n,n),所以AB的中点C错误!,由点C在直线y=错误!x上,且A,P,B三点共线得错误!解得m=3,所以A(错误!,错误!).又P(1,0),所以k AB=k AP=错误!=错误!,所以l AB:y=错误!(x-1),即直线AB的方程为(3+错误!)x-2y-3-错误!=0.1.直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A、B 两点,O为坐标原点,当|OA|+|OB|最小时,求l的方程.解:依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A 错误!;令x =0,可得B (0,4-k ).|OA |+|OB |=()1-4k +(4-k )=5-错误!=5+错误!≥5+4=9.所以当且仅当-k =错误!且k 〈0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.2.如图,在矩形ABCD 中,AB =6,AD =4,矩形内的点M 到AB 与AD 的距离分别为1和错误!,过M 的直线交AB 、AD 分别为P 、Q ,求错误!·错误!的最大值及取最大值时P 、Q 的位置.解:分别以AB 和AD 所在的直线为x 轴与y 轴,建立直角坐标系xAy .则M 错误!,C (6,4).设P (a ,0),Q (0,b )(a 〉0,b 〉0),则直线PQ 的方程为错误!+错误!=1,所以错误!+错误!=1,错误!·错误!=(a -6,-4)·(-6,b -4)=-(6a +4b )+52. 又错误!(6a +4b )=13+6错误!≥13+6×2错误!=25.所以6a +4b ≥25,当且仅当a =b 且错误!+错误!=1,即a =b =错误!时,6a +4b 取得最小值25.所以错误!·错误!≤-25+52=27.所以,当AP =AQ =错误!时,错误!·错误!的最大值为27.。
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。