8第八章 多重共线性:解释变量相关会有什么后果
- 格式:pptx
- 大小:638.13 KB
- 文档页数:32
多重共线性“多重共线性”一词由R. Frisch 1934年提出,它原指模型的解释变量间存在线性关系。
1.非多重共线性假定 rk (X 'X ) = rk (X ) = k解释变量不是完全线性相关的或接近完全线性相关的。
| r x i x j | ≠1, | r x i x j | 不近似等于1。
就模型中解释变量的关系而言,有三种可能。
(1)r x i x j = 0,解释变量间非线性相关,变量间相互正交。
这时已不需要多重回归,每个参数βj 都可以通过y 对x j 的一元回归来估计。
(2)| r x i x j | = 1,解释变量间完全共线性。
此时模型参数将无法确定。
直观地看,当两变量按同一方式变化时,要区别每个解释变量对被解释变量的影响程度就非常困难。
(3)0 < | r x i x j | < 1,解释变量间存在一定程度的线性相关。
实际中常遇到的是这种情形。
随着共线性程度的加强,对参数估计值的准确性、稳定性带来影响。
因此我们关心的不是有无多重共线性,而是多重共线性的程度。
2.多重共线性的经济解释(1)经济变量在时间上有共同变化的趋势。
如在经济上升时期,收入、消费、就业率等都增长,当经济收缩期,收入、消费、就业率等又都下降。
当这些变量同时进入模型后就会带来多重共线性问题。
0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDPCONS0.E +001.E +112.E +113.E +114.E +110.0E +005.0E +101.0E +111.5E +112.0E +112.5E +11C O N SG D P o f H o n g K o n g(2)解释变量与其滞后变量同作解释变量。
0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDP0.E+001.E+112.E+113.E+114.E+110.E+001.E+112.E+113.E+114.E+11GDP(-1)GDP3.多重共线性的后果(1)当 | r x i x j | = 1,X 为降秩矩阵,则 (X 'X ) -1不存在,βˆ= (X 'X )-1 X 'Y 不可计算。
用主成分法解决多重共线性问题一、多重共线性的表现线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系。
看似相互独立的指标本质上是相同的,是可以相互代替的,但是完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
二、多重共线性的后果1.理论后果多重共线性是因为变量之间的相关程度比较高。
按布兰查德认为, 在计量经济学中, 多重共线性实质上是一个“微数缺测性”问题,就是说多重共线性其实是由样本容量太小所造成,当样本容量越小,多重共线性越严重。
多重共线性的理论主要后果:(1)完全共线性下参数估计量不存在;(2)近似共线性下OLS估计量非有效;(3)模型的预测功能失效;(4)参数估计量经济含义不合理2.现实后果(1)各个解释变量对指标最后结论影响很难精确鉴别;(2)置信区间比原本宽,使得接受假设的概率更大;(3)统计量不显著;(4)拟合优度的平方会很大;(5)OLS估计量及其标准误对数据微小的变化也会很敏感。
三、多重共线性产生的原因1.模型参数的选用不当,在我们建立模型时如果变量之间存在着高度的相关性2. 由于研究的经济变量随时间往往有共同的变化趋势,他们之间存在着共性。
例如当经济繁荣时,反映经济情况的指标有可能按着某种比例关系增长3. 滞后变量。
滞后变量的引入也会产生多重共线行,例如本期的消费水平除受本期的收入影响之外,还有可能受前期的收入影响,建立模型时,本期的收入水平就有可能和前期的收入水平存在着共线性。
四、多重共线性的识别1.方差扩大因子法( VIF)一般认为如果最大的VIF超过10,常常表示存在多重共线性。
2.容差容忍定法如果容差(tolerance)<=0.1,常常表示存在多重共线性。
3. 条件索引条件索引(condition index)>10,可以说明存在比较严重的共线性。
五、多重共线性的处理方法处理方法有多重增加样本容量、剔除因子法、PLS(偏最小二乘法)、岭回归法、主成分法。
第8章 多重共线性:解释变量相关会有什么后果本章主要讲授如下内容:8.1 多重共线性的性质8.2 多重共线性产生的原因 8.3 多重共线性的后果8.4 多重共线性的诊断8.5 如何解决多重共线性:补救措施8.1 多重共线性的性质1.完全多重共线性的情形对于变量X 1、X 2……、X k ,如果存在不全为零的数λ1、λ2、……λk ,使得下式成立:02211=+++k k X X X λλλ则称变量X 1、X 2……、X k 之间存在一种完全的共线性。
注意:当解释变量之间存在完全共线性时,不可能获得所有参数的唯一估计值,因而也就不能根据样本进行任何统计推断(即假设检验)。
2.接近或者不完全多重共线性的情形对于变量X 1、X 2……、X k ,如果存在不全为零的数λ1、λ2、……λk ,使得下式成立:02211=++++μλλλk k X X X则称变量X 1、X 2……、X k 之间存在不完全的共线性。
这里,μ为随机误差项。
8.2 多重共线性产生的原因1.经济变量之间往往存在同方向的变化趋势。
2.经济变量之间往往存在着密切的关联度。
3.在模型中采用滞后变量也容易产生多重共线性。
4.在建模过程中由于解释变量选择不当引起了变量之间的多重共线性。
8.3 多重共线性的后果1.增大OLS 估计量的方差和标准差可以证明,参数估计值i b 的方差为:22211)()var(ii iti RX Xb -⋅-=∑σ其中,2i R 是第i 个解释变量对模型中其他解释变量作辅助回归模型),,,,,,(1121k i i i X X X X X f X +-=时的决定系数。
2.可能导致在假设检验中舍去重要的解释变量,检验的可靠性降低。
3.回归模型缺乏稳定性。
4.可能导致回归系数符号的错误。
8.4 多重共线性的诊断多重共线性只是存在的程度而非是否存在的问题,它属于样本特征而非总体特征。
一般可以采取以下方法进行诊断。
1.根据回归结果判断R 2较高但t 值统计显著的不多,这是多重共线性的“典型”特征。
计量经济学简答题1.简述计量经济学中的检验包括哪些内容?(1)t 检验:回归模型中变量的显著性检验;(2)F 检验:方程总体线性的显著性检验;受约束的回归检验;多重共线性检验(判定系数检验法和逐步回归法检验法);异方差性检验(G-Q 检验)(3)卡方检验:异方差性的检验(White 检验)、拉格朗日乘数(LM )检验(4)拟合优度检验:检验模型对样本观测值的拟合程度,一元线性回归模型中看可决系数R 2统计量的值,多元回归模型中看调整的R 2统计量的值。
其值越接近1,说明模型的拟合优度较高。
(5)异方差性的检验:图示检验法、White 检验、布罗施-帕甘(B-P )检验(F 统计量或LM统计量)、戈里瑟(Gleiser )检验。
(6)序列相关性的检验:图示法、回归检验法、D.W.检验法、拉格朗日乘数(LM )检验(7)时间序列的平稳性检验:单位根检验(DF 检验、ADF 检验)2.计量经济学研究的对象是什么?计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。
3.应用计量经济学方法,研究客观经济现象的步骤是什么?(1)陈述理论(或假设);(2)建立计量经济模型;(3)收集数据;(4)估计参数;(5)假设检验;(6)预测和政策分析。
4.多元线性回归模型的经典的基本假定有哪些?(1)回归模型是正确设定的;(2)解释变量X 1,X 2...X K 在所抽取的样本中具有变异性,且X j 之间不存在严格线性相关性(无完全多重共线性);(3)随机干扰项具有条件零均值性:()0...|2,1=K i X X X E μ;(4)随机干扰项具有条件同方差及不序列相关性:()221...,|ar σμ=K i X X X V ,()0...,|,21=K j i X X X Cov μμ;(5)随机干扰项满足正态分布:()221,0~...,|σμN X X X K i 。
在回归分析中,多重共线性是一个常见的问题。
多重共线性指的是自变量之间存在高度相关性,这会导致回归系数估计不准确,影响模型的解释性和预测能力。
在现实问题中,多重共线性经常出现,因此了解多重共线性的影响和解决方法是非常重要的。
一、多重共线性的影响多重共线性会导致回归系数估计不准确。
在存在多重共线性的情况下,自变量的系数估计可能偏离真实值,而且会出现符号与预期相反的情况。
这会影响对模型的解释,因为我们无法准确地评估每个自变量对因变量的影响程度。
同时,多重共线性也使得模型的预测能力下降,导致对未来数据的预测不准确。
二、多重共线性的检验为了检验模型中是否存在多重共线性,可以使用多种方法。
最常用的方法是计算自变量之间的相关系数。
如果相关系数大于或者,就可以认为存在多重共线性。
此外,还可以使用方差膨胀因子(VIF)来检验多重共线性。
VIF是用来衡量自变量之间相关性的指标,如果VIF的值大于10,就可以认为存在严重的多重共线性。
三、解决多重共线性的方法解决多重共线性问题的方法有很多种,下面介绍几种常用的方法。
1. 剔除相关性较高的自变量当自变量之间存在高度相关性时,可以选择剔除其中一个或几个自变量。
通常选择剔除与因变量相关性较低的自变量,以保留对因变量影响较大的自变量。
2. 使用主成分回归主成分回归是一种常用的解决多重共线性问题的方法。
它通过线性变换将原始的自变量转换为一组不相关的主成分变量,从而减少自变量之间的相关性。
主成分回归可以有效地解决多重共线性问题,并提高模型的解释性和预测能力。
3. 岭回归和套索回归岭回归和套索回归是一种正则化方法,可以在回归模型中加入惩罚项,从而减小自变量的系数估计。
这两种方法都可以有效地解决多重共线性问题,提高模型的鲁棒性和预测能力。
四、结语多重共线性是回归分析中的一个常见问题,会影响模型的解释性和预测能力。
为了解决多重共线性问题,我们可以使用多种方法,如剔除相关性较高的自变量、使用主成分回归、岭回归和套索回归等。