第8章 多重共线性:解释变量相关会有什么后果
- 格式:pptx
- 大小:1.26 MB
- 文档页数:47
计量经济学+重点形式(3)计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤(P2-P3)(1)建立一个理论假说(2)收集数据(3)设定数学模型(4)设立统计或经济计量模型(5)估计经济计量模型参数(6)核查模型的适用性:模型设定检验(7)检验源自模型的假设(8)利用模型进行预测4、用于实证分析的三类数据(P3-P4)(1)时间序列数据:按时间跨度收集到的(定性数据、定量数据);(2)截面数据:一个或多个变量在某一时点上的数据集合;(3)合并数据:包括时间序列数据和截面数据。
(一类特殊的合并数据—面板数据(纵向数据、微观面板数据):同一个横截面单位的跨期调查数据)第二章线性回归的基本思想:双变量模型1、回归分析(P18)用于研究一个变量(称为被解释变量或应变量)与另一个或多个变量(称为解释变量或自变量)之间的关系2、回归分析的目的(P18-P19)(1)根据自变量的取值,估计应变量的均值;(2)检验(建立在经济理论基础上的)假设;(3)根据样本外自变量的取值,预测应变量的均值;(4)可同时进行上述各项分析。
3、总体回归函数(PRF)(P19-P22)(1)概念:反映了被解释变量的均值同一个或多个解释变量之间的关系(2)表达式:)①确定/非随机总体回归函数:E(Y|Xi=B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项(随机误差项、噪声)B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项(P22)(1)定义:代表了与被解释变量Y有关但未被纳入模型变量的影响。
每一个随机误差项对于Y 的影响是非常小的,且是随机的。
随机误差项的均值为0(2)性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单。
用主成分法解决多重共线性问题一、多重共线性的表现线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系。
看似相互独立的指标本质上是相同的,是可以相互代替的,但是完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
二、多重共线性的后果1.理论后果多重共线性是因为变量之间的相关程度比较高。
按布兰查德认为, 在计量经济学中, 多重共线性实质上是一个“微数缺测性”问题,就是说多重共线性其实是由样本容量太小所造成,当样本容量越小,多重共线性越严重。
多重共线性的理论主要后果:(1)完全共线性下参数估计量不存在;(2)近似共线性下OLS估计量非有效;(3)模型的预测功能失效;(4)参数估计量经济含义不合理2.现实后果(1)各个解释变量对指标最后结论影响很难精确鉴别;(2)置信区间比原本宽,使得接受假设的概率更大;(3)统计量不显著;(4)拟合优度的平方会很大;(5)OLS估计量及其标准误对数据微小的变化也会很敏感。
三、多重共线性产生的原因1.模型参数的选用不当,在我们建立模型时如果变量之间存在着高度的相关性2. 由于研究的经济变量随时间往往有共同的变化趋势,他们之间存在着共性。
例如当经济繁荣时,反映经济情况的指标有可能按着某种比例关系增长3. 滞后变量。
滞后变量的引入也会产生多重共线行,例如本期的消费水平除受本期的收入影响之外,还有可能受前期的收入影响,建立模型时,本期的收入水平就有可能和前期的收入水平存在着共线性。
四、多重共线性的识别1.方差扩大因子法( VIF)一般认为如果最大的VIF超过10,常常表示存在多重共线性。
2.容差容忍定法如果容差(tolerance)<=0.1,常常表示存在多重共线性。
3. 条件索引条件索引(condition index)>10,可以说明存在比较严重的共线性。
五、多重共线性的处理方法处理方法有多重增加样本容量、剔除因子法、PLS(偏最小二乘法)、岭回归法、主成分法。
三、多重共线性的检验 (一) 相关系数检验利用相关系数可以分析解释变量之间的两两相关情况。
在EViews 软件中可以直接计算(解释)变量的相关系数矩阵: [命令方式]COR 解释变量名[菜单方式]将所有解释变量设置成一个数组,并在数组窗口中点击View\Correlations. (二) 辅助回归模型检验相关系数只能判断解释变量之间的两两相关情况,当模型的解释变量个数多于两下、并且呈现出较为复杂的相关关系时,可以通过每个解释变量对其他解释变量的辅助回归模型来检验多重共线性,即依次建立k 个辅助回归模型:k i x a x a x a x a a x kki i i i i,,1111111=++++++=++--ε如果,其中某些方程显著,则表明存在多重共线性,所对应的变量可以近似地用其他解释变量线性表示。
辅助回归模型检验不仅能检验多元回归模型的多重共线性,而且可以得到多重共线性的具体形式;如果再结合偏相关关系检验,还能进一步判定是哪些解释变量引起了多重共线性,这有助于分析如何消除多重共线性的影响。
(三) 方差膨胀因子检验对于多元线性回归模型,ib ˆ的方差可以表示成:iijiiijiVIF x x R x x b D ∙∑-=-∑-=22222)(11)()ˆ(σσ其中,i i x R 为2关于其他解释变量辅助回归模型的判定系数,i VIF 为方差膨胀因子。
随着多重共线性程度的增强,VIF 以及系数估计误差都在增大。
因此,可以用VIF 作为衡量多重共线性的一个指标;一般当10>VIF 时,(此时9.02>iR ),认为模型存在较严重的多重共线性。
另一个与VIF 等价的指标是“容许度”(Tolerance ),其定义为:iiiVIF R TOL /1)1(2=-=显然,10≤≤TOL ,当i x 与其他解释变量高度相关时,0→TOL 。
因此,一般当1.0<TOL 时,认为模型存在较严重的多重共线性。
第8章 多重共线性:解释变量相关会有什么后果本章主要讲授如下内容:8.1 多重共线性的性质8.2 多重共线性产生的原因 8.3 多重共线性的后果8.4 多重共线性的诊断8.5 如何解决多重共线性:补救措施8.1 多重共线性的性质1.完全多重共线性的情形对于变量X 1、X 2……、X k ,如果存在不全为零的数λ1、λ2、……λk ,使得下式成立:02211=+++k k X X X λλλ则称变量X 1、X 2……、X k 之间存在一种完全的共线性。
注意:当解释变量之间存在完全共线性时,不可能获得所有参数的唯一估计值,因而也就不能根据样本进行任何统计推断(即假设检验)。
2.接近或者不完全多重共线性的情形对于变量X 1、X 2……、X k ,如果存在不全为零的数λ1、λ2、……λk ,使得下式成立:02211=++++μλλλk k X X X则称变量X 1、X 2……、X k 之间存在不完全的共线性。
这里,μ为随机误差项。
8.2 多重共线性产生的原因1.经济变量之间往往存在同方向的变化趋势。
2.经济变量之间往往存在着密切的关联度。
3.在模型中采用滞后变量也容易产生多重共线性。
4.在建模过程中由于解释变量选择不当引起了变量之间的多重共线性。
8.3 多重共线性的后果1.增大OLS 估计量的方差和标准差可以证明,参数估计值i b 的方差为:22211)()var(ii iti RX Xb -⋅-=∑σ其中,2i R 是第i 个解释变量对模型中其他解释变量作辅助回归模型),,,,,,(1121k i i i X X X X X f X +-=时的决定系数。
2.可能导致在假设检验中舍去重要的解释变量,检验的可靠性降低。
3.回归模型缺乏稳定性。
4.可能导致回归系数符号的错误。
8.4 多重共线性的诊断多重共线性只是存在的程度而非是否存在的问题,它属于样本特征而非总体特征。
一般可以采取以下方法进行诊断。
1.根据回归结果判断R 2较高但t 值统计显著的不多,这是多重共线性的“典型”特征。