勾股定理的逆定理教学设计教案
- 格式:docx
- 大小:155.09 KB
- 文档页数:11
八年级数学《勾股定理的逆定理》教案优秀10篇、课堂小结1①角为直角、②垂直、③勾股定理的逆定理、能力目标2(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数。
让学生自己解决问题3判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的`思路。
教学过程4(1)通过自主学习的开展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征。
让学生主动提出问题5利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。
这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。
所有这些都由学生自己完成,估计学生不会感到困难。
这样设计主要是培养学生善于提出问题的习惯及能力。
重点、难点分析6本节内容的重点是勾股定理的逆定理及其应用。
它可用边的关系判断一个三角形是否为直角三角形。
为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。
在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后到达一个目标式,这种“转化〞对学生来讲也是一个困难的地方。
判定直角三角形的方法7勾股定理的内容文字表达(投影显示)符号表述图形(画在黑板上)板书设计8(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
、定理的应用(投影显示题目上9(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长有下面关系:那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
18.2《勾股定理的逆定理》教案【教学目标】1、理解勾股定理的逆定理的证明方法,并能证明勾股定理的逆定理;2、探索并掌握直角三角形判定思想,能用之判断一个三角形是否是直角三角形,会应用勾股定理的逆定理。
【教学重点】勾股定理的逆定理的证明及应用及其应用【教学难点】勾股定理的逆定理的证明及应用及其应用教学过程一.复习回顾提问:前面我们学习了勾股定理,它的内容是什么?(勾股定理:如果直角三角形的两直角边长分别为 a 、b ,斜边长为c ,那么222c b a =+)提问:这个命题的题设和结论分别是什么?(题设:直角三角形两直角边长分别为a 、b ,斜边长为c ;结论:222c b a =+)提问:命题“如果三角形的三边长a 、b 、c 满足222c b a =+,那么这个三角形是直角三角形.”的题设和结论又分别是什么?(题设:三角形的三边长a 、b 、c 满足222c b a =+,结论:三角形是直角三角形)二.新课讲授1.命题1:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+命题2:如果三角形的三边长a 、b 、c 满足222c b a =+,那么这个三角形是直角三角形.命题1与命题2的题设和结论有什么联系?请同学们看课本P73,朗读:题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
所以,命题1是命题2的逆命题,命题2是命题1的逆命题。
2.效果检测:说出下列命题的逆命题.这些命题的逆命题成立吗?(1) 两条直线平行,内错角相等.(2) 如果两个实数相等,那么它们的平方相等.(1)原命题成立吗?(成立)它的逆命题是什么?(内错角相等,两直线平行) 这个逆命题成立吗?(成立)(2)原命题成立吗?(成立) 它的逆命题是什么?(如果两个实数的平方相等,那么这两个实数相等) 这个逆命题成立吗?(不成立)感悟:一个命题正确,它的逆命题不一定正确。
《勾股定理的逆定理》教学设计Yqzx Bmm【内容和教材分析】内容教材第31-33 页,勾股定理的逆定理.教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一.【教学目标】知识与技能1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理.2.理解原命题、逆命题、逆定理的概念关系.3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形.过程与方法1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程.2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.情感、态度与价值观1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系.2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重难点及突破】重点1.勾股定理的逆定理及运用.2.灵活运用勾股定理的逆定理解决实际问题.难点1.勾股定理的逆定理的证明.2.说出一个命题的逆命题及辨别其真假性.【教学突破】1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题.2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断.3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大•但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为"如果那么”4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根据已知条件计算出各边长,再利用勾股定理的逆定理判断三角形是否是直角三角形,再回答问题.【教学设计】一、复习导入师:上一节课我们学习了勾股定理,请同学们回忆一下:勾股定理的内容是什么生:如果直角三角形的两条直角边为a、b,斜边为c,那么三边满足的关系为a2+b2=d2.师:勾股定理反映了直角三角形三边间的数量关系,即直角边为a,b斜边为c,则三边满足a2+b2=c"(带领学生集体复习勾股定理)•思考:勾股定理的题设、结论分别是什么生:题设为直角三角形的两条直角边长分别为a、b,斜边为c,结论为a2+b2=c2师:如果把勾股定理的题设、结论交换一下位置,即如果三角形的三边长a, b, c 满足a2+b2=c2,那么这个三角形是否是直角三角形本节课我们一起来研究这个问题板书课题:勾股定理的逆定理设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,自然地引出勾股定理的逆定理.二、教学新知1.发现勾股定理的逆定理.观察发现:师生共同学习古埃及人画直角的方法:把一根长绳打上等距离的13 个结,然后以3 个结间距, 4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
《勾股定理的逆定理》教学设计一、教学目标1.掌握勾股定理的逆定理,并会证明.2.理解原命题、逆命题和逆定理的概念及关系.3.进一步掌握勾股定理及其逆定理,并会熟练应用.二、教学重点及难点重点:掌握勾股定理的逆定理.难点:灵活应用勾股定理的逆定理解决实际问题.三、教学用具多媒体课件四、相关资料《古埃及人画直角的方法》动画,《利用三角形三边平方的数量关系判断三角形的形状》动画,《互逆命题》图片,《常见勾股数举例》图片,《勾股定理与其逆定理的区别与联系》图片,《勾股定理的逆定理(1)》图片,《勾股定理的逆定理(2)》图片五、教学过程【问题导入】问题1:你能说出勾股定理吗?并指出定理的题设和结论.命题1 勾股定理:如果直角三角形的两条直角边分别为a,b,斜边长为c,那么a2+ b2=c2.追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?追问2:新的命题能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.【探究学习】古埃及人曾用下面的方法得到直角:用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.按照这种做法真能得到一个直角三角形吗?实验操作:(1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),它们是直角三角形吗?① 2.5,6,6.5;②6,8,10.解:2.52+62=6.52 ,62+82=102(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:请判断这些三角形的形状,并提出猜想.问题2 由上面几个例子你发现了什么吗?请以命题的形式说出你的观点!命题2 :如果三角形的三边长a、b、c满足a2+ b2=c2,那么这个三角形是直角三角形.问题3:把勾股定理记着命题1,上面的结论作为命题2.命题1和命题2的题设和结论分别是什么?命题1 如果直角三角形的两条直角边分别为a,b,斜边长为c,那么a2+ b2=c2.命题2 如果三角形的三边长a、b、c满足a2+ b2=c2,那么这个三角形是直角三角形.问题4:命题1和命题2的题设和结论有着什么的关系?两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.插入《互逆命题》图片资源以图示的方式对比互逆命题,加深学生对互逆命题概念的认识.插入《互逆命题》图片本图片资源以图示的方式对比互逆命题,加深学生的概念的认识.如果三角形的较长边的平方等于其它两条较短边的平方和,那么这个三角形是直角三角形.已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2.求证:△ABC是直角三角形.证明:画一个△A’B’C’,使∠C’=90°,B’C’=a, C’A’=b.因为∠C′=90°,所以A′B′2= a2+b2.因为a2+b2=c2,所以A′B′2=c2.因为边长取正值,所以A′B′ =c.在△ABC和△A′B′C′中,BC=a=B′C′,CA=b=C′A′,AB=c=A′B′,所以△ABC≌△A′B′C′(SSS).所以∠C= ∠C′.所以∠C= 90°.所以△ABC是直角三角形.插入《常见勾股数举例》图片资源给出一些常见的勾股数,加深学生对勾股数的认识.插入《常见勾股数举例》图片本图片资源给出一些常见的勾股数,加深学生的概念的认识.【典例讲解】例1判断由线段a,b,c 组成的三角形是不是直角三角形:a=15,b=17,c=8;分析:根据勾股定理及其逆定理判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.解:因为152+82 =225+64=289,172 =289,所以152+82 =172.所以以15,8,17为边长的三角形是直角三角形.像15,17,8 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.例2 如图,某港口P位于东西方向的海岸上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于Q、R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?解:根据题意,PQ = 16 × 1.5 = 24 ,PR = 12 × 1.5 = 18,QR = 30.因为24 2+ 182 = 30 2,即PQ2 +PR2 = QR2所以∠QPR= 90°由“远航”号沿东北方向航行可知,∠1=45°.所以∠2=_45°,即“海天”号沿西北方向航行.设计意图:例2从生活实际出发,让学生了解在实际生活中对数学知识的运用,站在数学角度看待问题解决问题,培养学生的数学思维.插入《勾股定理与其逆定理的区别与联系》图片,总结勾股定理与其逆定理的区别与联系,加深学生对勾股定理和勾股定理逆定理的认识.插入《勾股定理与其逆定理的区别与联系》图片本图片资源总结勾股定理与其逆定理的区别与联系,加深学生对定理的认识.【随堂练习】1.说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:(2)对顶角相等;逆命题:(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:2.已知三角形的三边长为9 ,12 ,15 ,则这个三角形的最大角是_度;3.△ABC的三边长为9 ,40 ,41 ,则△ABC的面积为_______;4.三角形的三边长为8 ,15 ,17 ,那么最短边上的高为_____;5.如图,在四边形ABCD是,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积.1.内错角相等,两直线平行.真命题.相等的角是对顶角.假命题.相等的角是对顶角.假命题.2.903.1804.155.解:因为32+42=9+16=25,52=25,即32+42=52所以根据勾股定理的逆定理,△ABD是直角三角形因为52+122=25+144=169,132=169,即52+122=132所以根据勾股定理的逆定理,△BCD是直角三角形所以四边形ABCD的面积=S△ABD+S△BCD=3×4÷2+5×12÷2=6+30=36.设计意图:对勾股定理的逆定理进行练习,让学生掌握勾股定理逆定理的解题过程,培养学生独立解决问题的能力.六、课堂小结1.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,这个三角形是直角三角形.2.勾股数:能够成为直角三角形三条边长的三个正整数.3.互逆命题与互逆定理:两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.七、板书设计勾股定理的逆定理1.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,这个三角形是直角三角形.2.勾股数:能够成为直角三角形三条边长的三个正整数.3.互逆命题与互逆定理:两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.。
勾股定理的逆定理数学教案一、教学目标:1. 让学生理解勾股定理的逆定理的概念。
2. 引导学生掌握勾股定理的逆定理的证明过程。
3. 培养学生运用勾股定理的逆定理解决实际问题的能力。
二、教学内容:1. 勾股定理的逆定理的定义及表述。
2. 勾股定理的逆定理的证明过程。
3. 运用勾股定理的逆定理解决实际问题。
三、教学重点与难点:1. 教学重点:勾股定理的逆定理的概念及其证明过程。
2. 教学难点:运用勾股定理的逆定理解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解勾股定理的逆定理的概念。
2. 采用证明法,让学生掌握勾股定理的逆定理的证明过程。
3. 采用案例教学法,培养学生运用勾股定理的逆定理解决实际问题的能力。
五、教学步骤:1. 导入新课:回顾勾股定理的内容,引导学生思考勾股定理的逆定理。
2. 讲解勾股定理的逆定理:给出勾股定理的逆定理的定义及表述,解释其意义。
3. 证明勾股定理的逆定理:引导学生跟随老师一起证明勾股定理的逆定理。
4. 应用勾股定理的逆定理:给出实际问题,引导学生运用勾股定理的逆定理解决问题。
5. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。
六、课后作业:1. 复习勾股定理的逆定理的概念及证明过程。
2. 完成课后练习,运用勾股定理的逆定理解决实际问题。
3. 预习下一节课的内容。
七、教学反思:教师在课后应对本节课的教学情况进行反思,分析学生的学习效果,调整教学方法,以提高教学效果。
八、教学评价:通过课后作业、课堂表现、习题练习等多方面对学生进行评价,了解学生对勾股定理的逆定理的掌握情况。
九、教学拓展:1. 引导学生探索其他定理的逆定理。
2. 介绍勾股定理在现实生活中的应用。
3. 推荐相关阅读材料,加深学生对勾股定理及其逆定理的理解。
十、教学资源:1. 教材、教案、课件等教学资料。
2. 网络资源,如相关视频、文章等。
3. 实际问题案例。
4. 课后作业及评价表格。
六、教学策略:1. 问题驱动:通过提出实际问题,激发学生对勾股定理逆定理的兴趣和探究欲望。
《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。
18.2勾股定理的逆定理(第一课时)一、教学目标知识目标:1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2、探究勾股定理的逆定理的证明方法。
3、理解原命题、逆命题、逆定理的概念及关系。
能力目标:(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成的过程;(2)通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
情感目标:(1)通过用三角形的三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系;(2)通过对勾股定理的逆定理的探索,培养了学生的交流、合作的意识和严谨的学习态度。
同时感悟勾股定理和逆定理的应用价值。
二、教学重点难点重点:证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题。
难点:理解勾股定理的逆定理的推导。
三、教学准备圆规、三角板、一根打了13个等距离结的细绳子、钉子、小黑板四、教学过程(1)复习旧课1、在直角三角形中,两直角边长分别是3和4,则斜边长是 。
2.一个直角三角形,量得其中两边的长分别为5㎝、3㎝则第三边的长是_________。
3.要登上8高的建筑物,为了安全需要,需使梯子底端离建筑物6问至少需要多长的梯子?(2)情境导入1、在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢?【实验观察】用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用三角板量出最大角的度数.可以发现这个三角形是直角三角形。
(这是古埃及人画直角的方法)2、 用圆规、刻度尺作△ABC ,使AB=5㎝,AC=4㎝,BC=3㎝,量一量∠C 。
再画一个三角形,使它的三边长分别是5㎝、12㎝、13㎝,这个三角形有什么特征?3、为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系?(学生分组讨论,教师适当指导)学生猜想:如果一个三角形的三边长c b a ,,满足下面的关系222c b a =+,那么这个三角形是直角三角形。
八年级数学(人教版)
§18.2.2勾股定理的逆定理(第一课时)《18.2.2勾股定理的逆定理》教学设计
使学生能归纳总结数学思
【
实验方法:用一根钉上
的细绳子,让同学操作,用钉子钉在第一个
个结上,再钉在
上,最后将第十三个结与第一个结
定理定理》归纳结论:勾股定理的逆定理:如果
10
形?
例:根据下列条件,分别
a
a=
米的测影竿,早晨测得它的影长为
三角
甲、乙两艘巡逻艇立即从相距的
地将其拦行
°,问:甲巡逻艇的
AC=AD
+AC
理的逆定性:如果三角形的三条边长b,
定理是什么呢?)
选做题:已知:如图,四
的面积
勾股定理的逆定。
18.2 勾股定理的逆定理 教案教学目标知识与技能探索并掌握直角三角形判别思想,会应用勾股逆定理解决实际问题.过程与方法经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,掌握情理数学意识.情感态度与价值观培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值重点 理解并掌握勾股定理的逆定性,并会应用.难点 理解勾股定理的逆定理的推导.教学过程一、创设情境,导入课题【实验观察】实验方法:用一根钉上13个等距离结的细绳子,让同学操作,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用角尺量出最大角的度数.(90°),可以发现这个三角形是直角三角形.归纳结论:勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
二、研究新知、应用举例:例:以6,8,10为三边的三角形是直角三角形吗?如 三边为5,6,7的三角形是不是直角三角形?例:根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形(1)a =7,b=24,c=25; (2) a =32,b=1,c=32 例:已知ABC Δ的三边分别a,b,ca=22n m -,b=2mn,c=22n m +(m>n ,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。
分析:先来判断a,b,c 三边哪条最长,可以代m,n 为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c 最大。
解:2222222222)()2()(c n m mn n m b a =+=++=+ABC Δ∴是直角三角形注意事项:(1) 书写时千万ABC c b a Δ,25247,222222∴=+∴=+ 是直角三角形。
这里你弄错了勾股定理的逆定理的条件和结论。
(2) 分清何时利用勾股定理,何时利用其逆定理例(见课本P83 例2)思路点拨:首先应根据题意画出图形,(见课本P83图18.2-3).•这是一种象限图,依图形可以看出,“远航”号的航向已经知道,只要求出两艘轮船的航向所成的角,就可以知道“海天”号的航向.例:如图,在正方形ABCD 中,F 为DC 的中点,E 为B C 上一点,且EC=14BC ,求证:AF ⊥EF . 思路点拨:要证AF ⊥EF ,需证△AEF 是直角三角形,由勾股定理的逆定性,•只要证出AF 2+EF 2=AF2就可以了.三、随堂练习,巩固深化1.课本P84 “练习”1,2,32.【探研时空】若△ABC 的三边a ,b ,c满足条件a 2+b 2+c 2+338=10a+24b+26c ,试判定△ABC 的形状.(提示:根据所给条件,只有从关于a ,b ,c 的等式入手,找出a ,b ,c三边之间的关系,应用分解因式可得(a-5)2+(b-12)2+(c-13)2=0,求出a=5,b=12,c=13,∵a 2+b 2=c 2,•∴△ABC 是Rt △).例:如下图中分别以ABC Δ三边a,b,c 为边向外作正方形,正三角形,为直径作半圆,若S 1+S 2=S 3成立,则ABC Δ是直角三角形吗?四、课堂总结,发展潜能1.勾股定理的逆定性:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,•那么这个三角形是直角三角形.(问:勾股定理是什么呢?)2.该逆定理给出判定一个三角形是否是直角三角形的判定方法. B3.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.课后反思:《勾股定理的逆定理》的教学反思一、本节课的成功之处:1、本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校勾股定理的逆定理 ( 一)教课目的一、知识与技术 1.掌握直角三角形的鉴别条件. 2.熟记一些勾股数. 3.掌握勾股定理的逆定理的研究方法.二、过程与方法 1.用三边的数目关系来判断一个三角形能否为直角三角形,培育学生数形联合的思想. 2.经过对 Rt△鉴别条件的研究,培育学生勇敢猜想,勇于研究的创新精神.三、感情态度与价值观1.经过介绍相关历史资料,激发学生解决问题的梦想.2.经过对勾股定理逆定理的研究;培育学生学习数学的兴趣和创新精神.教课要点研究勾股定理的逆定理,理解互抗命题,原命题、抗命题的相关观点及关系.教课难点概括、猜想出命题 2 的结论.教具准备多媒体课件.教课过程一、创建问属情境,引入新课活动 1 (1) 总结直角三角形有哪些性质.(2) 一个三角形,知足什么条件是直角三角形?设计企图:经过对前面所学知识的概括总结,联想到用三边的关系能否能够判断一个三角形为直角三角形,提升学生发现反省问题的能力.师生行为学生疏组议论,沟通总结;教师指引学生回想.本活动,教师应要点关注学生:①可否踊跃主动地回想,总结前面学过的旧知识;②可否“温故知新” .生:直角三角形有以下性质: (1) 有一个角是直角; (2)两个锐角互余, (3) 两直角边的平方和等于斜边的平方: (4)在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么,一个三角形知足什么条件,才能是直角三角形呢?生:有一个内角是90°,那么这个三角形就为直角三角形.生:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 斜边 c 拥有一定的数目关系即 a2+ b2= c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢 ?我们来看一下古埃及人如何做 ?二、解说新课活动 2 问题:听说古埃及人用以下图的方法画直角:把一根长蝇打上等距离的 13 个结,而后以3 个结, 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边分别为 3、 4、 5.有下边的关系“ 32+ 42=52”.那么围成的三角形是直角三角形.画画看,假如三角形的三边分别为 2.5cm,6cm ,6.5cm,有下边的关系,“ 2.52+ 62= 6.52,画出的三角形是直角三角形吗?换成三边分别为 4cm、 7.5cm、 8.5cm.再试一试.设计企图:由特别到一般,概括猜想出“假如三角形三边a,b, c 知足 a2+ b2= c2,那么这个三角形就为直免三角形的结论,培育学生着手操作能力和追求解决数学识题的一般方法.师生行为让学生在小组内共同合作,协手达成此活动.教师参加此活动,并给学生以提示、启迪.在本活动中,教师应要点关注学生:①可否踊跃着手参加.②可否从操作活动中,用数学语言概括、猜想出结论.③学生能否有战胜困难的勇气.生:我们不难发现上图中,第(1)个结到第 (4) 个结是 3 个单位长度即 AC = 3;同理 BC =4, AB = 5.因为 32+ 42=52.我们围成的三角形是直角三角形.生:假如三角形的三边分别是 2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5cm 的边所对的角是直角,并且 2.52+ 62= 6.52.再换成三边分别为 4cm,7.5cm, 8.5cm 的三角形,目标能够发现8.5cm 的边所对的角是直角,且也有 42+ 7.52=8.52.是不是三角形的三边只需有两边的平方和等于第三边的平方,就能获取一个直角三角形呢?活动 3下边的三组数分别是一个三角形的三边长a, b, c5, 12, 13; 7,24, 25;8, 15,17.(1) 这三组效都知足 a2+ b2= c2吗 ?(2) 分别以每组数为三边长作出三角形,用量角度量一量,它们都是直角三角形吗?设计企图:本活动经过让学生按已知数据作出三角形,并丈量三角形三个内角的度数来进一步获取一个三角形是直角三角形的相关边的条件.师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更为深信前面猜想出的结论,教师对学生概括出的结论应赐予解说,我们将在下一节给出证明.本活动教师应要点关注学生:①对猜想出的结论能否还有疑虑.②可否踊跃主动的操作,并且很有耐心.生: (1)这三组数都知足a2+ b2= c2. (2)以每组数为边作出的三角形都是直角三角形.师:很好,我们进一步经过实质操作,猜想结论.命题 2 假如三角形的三边长a, b,c 知足 a2+ b2= c2那么这个三角形是直角三角形.同时,我们也进一步理解了古埃及人那样做的道理.实质上,古代中国人也曾利用相像的方法获取直角.直至科技发达的今日——人类已跨人21 世纪,建筑工地上的工人师傅们仍旧离不开“三四五放线法” .“三四五放线法”是一种古老的归方操作.所谓“归方”就是“做成直角”。
人教版数学八年级下册17.2《勾股定理的逆定理》优秀教学设计一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
本节课主要让学生掌握勾股定理的逆定理,并能运用其判断一个三角形是否为直角三角形。
教材通过生活中的实际例子引入勾股定理的逆定理,使学生能够更好地理解并运用这一定理。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和三角形的知识,对三角形的基本概念和性质有所了解。
但是,学生对勾股定理的逆定理可能较为陌生,需要通过实例和练习来加深理解。
三. 教学目标1.知识与技能:让学生掌握勾股定理的逆定理,并能运用其判断一个三角形是否为直角三角形。
2.过程与方法:通过实例、讨论和练习,培养学生的推理能力和合作能力。
3.情感态度价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:勾股定理的逆定理的内容和运用。
2.难点:如何判断一个三角形是否为直角三角形,以及如何运用勾股定理的逆定理解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际例子,引导学生思考和探索,激发学生的学习兴趣。
2.小组讨论法:学生进行小组讨论,培养学生的合作能力和口头表达能力。
3.练习法:通过大量的练习题,巩固学生对勾股定理逆定理的理解和运用。
六. 教学准备1.教学课件:制作勾股定理的逆定理的相关课件,以便进行课堂教学。
2.练习题:准备一些有关勾股定理逆定理的练习题,用于课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际例子,如建筑工人测量楼房的高度,引导学生思考如何判断一个三角形是否为直角三角形。
从而引出本节课的主题——勾股定理的逆定理。
2.呈现(10分钟)讲解勾股定理的逆定理的内容,并通过动画或实物演示,让学生直观地理解这一定理。
同时,给出勾股定理逆定理的数学表达式。
3.操练(10分钟)让学生进行一些有关勾股定理逆定理的练习题,巩固对这一定理的理解。
可以学生进行小组讨论,共同解决问题。