第一章 有限差分方法
- 格式:ppt
- 大小:10.27 MB
- 文档页数:94
有限差分方法
有限差分方法是数值分析中常用的一种数值计算方法,它主要用于解决微分方
程和积分方程的数值逼近问题。
有限差分方法的基本思想是将微分方程中的导数用差分代替,将微分方程转化为代数方程,然后利用数值计算方法求解代数方程,从而得到微分方程的数值解。
有限差分方法的核心是将求解区域离散化,将连续的求解区域划分为有限个小
区域,然后在每个小区域内利用差分逼近微分方程,得到代数方程。
通过对这些代数方程进行适当的组合和求解,最终得到微分方程的数值解。
有限差分方法有很多种形式,常见的有向前差分、向后差分、中心差分等。
这
些方法在具体应用中有各自的特点和适用范围。
在选择使用哪种有限差分方法时,需要根据具体的问题和求解区域的特点来进行合理的选择。
有限差分方法在实际应用中具有广泛的适用性,它可以用于求解各种类型的微
分方程和积分方程,包括常微分方程、偏微分方程以及积分方程等。
在工程、物理、经济等领域中,有限差分方法被广泛应用于模拟和求解各种实际问题。
在使用有限差分方法时,需要注意选取合适的离散化步长和求解区域的划分方式,这对于最终的数值解的精度和稳定性有着重要的影响。
同时,还需要注意数值计算方法的稳定性和收敛性,避免出现数值解的不稳定或者发散现象。
总之,有限差分方法作为一种常用的数值计算方法,在数值分析和科学计算中
具有重要的地位和作用。
掌握有限差分方法的基本原理和应用技巧,对于解决实际问题和开展科学研究具有重要的意义。
通过不断的学习和实践,可以更好地掌握有限差分方法的使用技巧,提高数值计算的准确性和效率。
一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。
有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图。
有限差分方法有限差分法是一种用于数值解决常微分方程(ODE)、偏微分方程(PDE)的数学技术。
它将原本的微分方程式转化为差分方程,最终可以用数值计算解决。
作为一门数值分析技术,有限差分方法主要用于计算解决微分方程的参数和状态。
有限差分法的步骤一般分为三个:(1)数学模型的构建,(2)对物理场的离散化,(3)对差分方程进行求解。
首先,我们要建立准确的物理模型,这一步涉及到选取合适的假设和参数,以及采用适当的边界条件和初始条件。
其次,我们要对原方程进行离散处理,使其转化为有限差分方程,从而为求解此类方程打下基础。
最后,我们要设计出一个有效的求解方法,通过用数值计算解决有限差分方程,获得所求解的结果。
有限差分法的优点主要体现在精度和速度上。
首先,它的精度极高,它可以求解出精确的解,而且计算速度也很快,无需复杂的数学推理,就可以较快速度解决问题,大大降低了计算的难度。
其次,有限差分法可以拓展到更多的系统,不限于只能解决二维静止场,而能够解决一般感兴趣的场景。
此外,有限差分技术也可以解决有时限性的问题,例如分析物体的动态特性。
此外,有限差分方法也存在一些缺点,例如边界条件的处理和计算复杂性的增加。
由于差分的求解是基于某些边界条件的,一旦边界条件发生变化,原有的求解方案就会失效。
此外,在进行离散化处理时,随着问题规模的增大,计算复杂性也会随之增加,使得求解较大规模的问题极其困难。
有限差分法已经成为当今解决复杂问题数值计算的重要技术手段。
它在准确性、精度和计算速度方面均具有优势,深受工业界、医学界及数学领域的青睐。
有限差分法的实际应用也正在层出不穷,今后有望在更多的领域得到广泛的应用。
有限差分法、有限单元法和有限体积法的简介1.有限差分方法有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2.有限元方法有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法推导摘要:一、有限差分法简介1.有限差分法的概念2.有限差分法在数值计算中的应用二、有限差分法的推导1.差分法的定义2.有限差分法的推导过程3.有限差分法的性质三、有限差分法的应用1.微分方程的数值解法2.有限差分法在数值积分中的应用四、有限差分法的优缺点1.优点2.缺点正文:一、有限差分法简介有限差分法是一种数值计算方法,通过将连续函数离散化,用差分代替微分,从而实现对微分方程或积分方程的求解。
有限差分法广泛应用于科学、工程和金融领域,例如,在天气预报、海洋学、生物学、经济学等方面都有重要作用。
二、有限差分法的推导1.差分法的定义差分法是一种将函数在某一点上的值与该点附近点的值相减的方法,用于近似计算函数在该点处的导数或变化率。
给定一个函数f(x),在x=a 处求导,可以得到差分算子Df(a,h),其中h 为差分步长。
2.有限差分法的推导过程有限差分法是将差分法应用于离散点集,通过有限个差分算子来近似表示函数在某一点的值。
设函数f(x) 在区间[x0, x1] 上可导,离散点集为{x0,x0+h, x0+2h, ..., x1},有限差分法的表达式为:Df(x0+k h) ≈ (h/(k+1)) * [f(x0+k h) - f(x0+(k-1) h)] (k=1,2,3,...,n-1)3.有限差分法的性质有限差分法具有以下性质:(1) 线性性质:Df(x) + Dg(x) = D(f(x) + g(x))(2) 移位性质:Df(x+h) = Df(x) + h * df(x)/dx(3) 微分性质:Df(x) * (x - x0) = f"(x) * (x - x0) + O(h^2)三、有限差分法的应用1.微分方程的数值解法有限差分法可以用于求解微分方程,例如,对于一阶线性微分方程:df(x)/dx + p(x) * f(x) = q(x)可以用有限差分法将其离散化为一个线性代数方程组,从而求解离散解。
有限差分方法有限差分方法一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
微分方程的定解问题就是在满足某些定解条件下求微分方程的解。
在空间区域的边界上要满足的定解条件称为边值条件。
如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。
不含时间而只带边值条件的定解问题,称为边值问题。
与时间有关而只带初值条件的定解问题,称为初值问题。
同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。
所以要采用可行的数值解法。
有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。
此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
偏微分方程初值问题的差分法许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。
描述这些过程的偏微分方程具有这样的性质:若初始时刻t=t0的解已给定,则t t0时刻的解完全取决于初始条件和某些边界条件。
利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。
双曲型方程的差分方法最简单的双曲型方程的初值问题是:式中嫓(x)为已知初值函数。
这初值问题的解是:u(x,t)=嫓(x-at)。
(2)由(2)可见,(1a)(1b)的解(2)当a>0时代表一个以有限的速度a沿特征线x-at=常数向右传播的波,而解u(x,t)在P(慜,惭)点的值完全由嫓(x)在x轴上的点A(慜-а惭,0)的值决定。
A点就是双曲型方程(1a)在P点的依赖域(图1)。