有限差分方法
- 格式:pdf
- 大小:1.10 MB
- 文档页数:19
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
有限差分方法
有限差分方法是数值分析中常用的一种数值计算方法,它主要用于解决微分方
程和积分方程的数值逼近问题。
有限差分方法的基本思想是将微分方程中的导数用差分代替,将微分方程转化为代数方程,然后利用数值计算方法求解代数方程,从而得到微分方程的数值解。
有限差分方法的核心是将求解区域离散化,将连续的求解区域划分为有限个小
区域,然后在每个小区域内利用差分逼近微分方程,得到代数方程。
通过对这些代数方程进行适当的组合和求解,最终得到微分方程的数值解。
有限差分方法有很多种形式,常见的有向前差分、向后差分、中心差分等。
这
些方法在具体应用中有各自的特点和适用范围。
在选择使用哪种有限差分方法时,需要根据具体的问题和求解区域的特点来进行合理的选择。
有限差分方法在实际应用中具有广泛的适用性,它可以用于求解各种类型的微
分方程和积分方程,包括常微分方程、偏微分方程以及积分方程等。
在工程、物理、经济等领域中,有限差分方法被广泛应用于模拟和求解各种实际问题。
在使用有限差分方法时,需要注意选取合适的离散化步长和求解区域的划分方式,这对于最终的数值解的精度和稳定性有着重要的影响。
同时,还需要注意数值计算方法的稳定性和收敛性,避免出现数值解的不稳定或者发散现象。
总之,有限差分方法作为一种常用的数值计算方法,在数值分析和科学计算中
具有重要的地位和作用。
掌握有限差分方法的基本原理和应用技巧,对于解决实际问题和开展科学研究具有重要的意义。
通过不断的学习和实践,可以更好地掌握有限差分方法的使用技巧,提高数值计算的准确性和效率。
有限差分法有限差分法(Finite Differential Method, FDM )什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。
按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
有限差分法的基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
(1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格)进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻和股票价格,用变量f i ,j 表示(i,j )点的期权价格。
2.建立差分格式(1)内含的有限差分方法其步骤可分为以下几步:(1)求前向差分近似:(2) 后向差分格式:(3)将(2),(3)式平均可更加对称地求出的近似,即(4)(2)求用前向差分近似:(5)(3)求(6)(4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式:+ b j f i,j−c j f i,j + 1 = f i + 1,j(7)aj f i,j− 1其中:i=0,1,…,N-1。
j=0,1…,M-1针对看跌期权和看涨期权可分别求出方程的边界条件:看跌期权:看涨期权:(5)利用边界条件和(7)式可以给出M-1个联立方程组:+ b j f N− 1,j + c j f N− 1,j + 1j=1,2…,M-1aj f N− 1,j− 1求解这M-1个联立方程组即可以求出期权价格,但对美式看跌期权时我们必须考虑其提前执行的情况。
有限差分公式
有限差分是微分方程解的近似值的一种表示方法,通常用数学表达式
f(x+b)-f(x+a)来表示。
如果将有限差分除以b-a,则可以得到差商。
在微分方程数值解的有限差分方法中,特别是处理边界值问题时,有限差分导数的逼近起着关键的作用。
有限差分通常考虑三种形式:正向差分、反向差分和中心差分。
正向差分是f(x+h)-f(x),反向差分是f(x)-f(x-h),中心差分是f(x+h)-f(x-h)。
当h取为1时,正向差分除以h近似于导数。
在数值方法中,有限差分法是一种常用的数值解法,它用差商代替微分方程中的偏导数,从而得到相应的差分方程。
通过解这个差分方程,可以得到微分方程解的近似值。
以上内容仅供参考,如需更多信息,建议查阅数学类书籍或咨询数学专业人士。
1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
有限差分方法有限差分法是一种用于数值解决常微分方程(ODE)、偏微分方程(PDE)的数学技术。
它将原本的微分方程式转化为差分方程,最终可以用数值计算解决。
作为一门数值分析技术,有限差分方法主要用于计算解决微分方程的参数和状态。
有限差分法的步骤一般分为三个:(1)数学模型的构建,(2)对物理场的离散化,(3)对差分方程进行求解。
首先,我们要建立准确的物理模型,这一步涉及到选取合适的假设和参数,以及采用适当的边界条件和初始条件。
其次,我们要对原方程进行离散处理,使其转化为有限差分方程,从而为求解此类方程打下基础。
最后,我们要设计出一个有效的求解方法,通过用数值计算解决有限差分方程,获得所求解的结果。
有限差分法的优点主要体现在精度和速度上。
首先,它的精度极高,它可以求解出精确的解,而且计算速度也很快,无需复杂的数学推理,就可以较快速度解决问题,大大降低了计算的难度。
其次,有限差分法可以拓展到更多的系统,不限于只能解决二维静止场,而能够解决一般感兴趣的场景。
此外,有限差分技术也可以解决有时限性的问题,例如分析物体的动态特性。
此外,有限差分方法也存在一些缺点,例如边界条件的处理和计算复杂性的增加。
由于差分的求解是基于某些边界条件的,一旦边界条件发生变化,原有的求解方案就会失效。
此外,在进行离散化处理时,随着问题规模的增大,计算复杂性也会随之增加,使得求解较大规模的问题极其困难。
有限差分法已经成为当今解决复杂问题数值计算的重要技术手段。
它在准确性、精度和计算速度方面均具有优势,深受工业界、医学界及数学领域的青睐。
有限差分法的实际应用也正在层出不穷,今后有望在更多的领域得到广泛的应用。