第3章阵列信号处理2014.
- 格式:ppt
- 大小:4.07 MB
- 文档页数:86
阵列信号处理读研一、引言随着信息技术的发展和智能设备的普及,信号处理在各个领域中扮演着重要的角色。
其中,阵列信号处理作为一种高级信号处理技术,具有广泛的应用前景。
因此,越来越多的人选择进行阵列信号处理相关研究,并选择读研深造。
本文将详细探讨阵列信号处理读研的相关内容。
二、阵列信号处理概述2.1 信号处理的基本概念信号处理是指对信号进行采集、转化、编码、解码等一系列操作的过程。
阵列信号处理则将信号处理与阵列技术相结合,通过利用多个传感器接收信号,并利用阵列中的几何结构对信号进行处理和分析。
2.2 阵列信号处理的应用领域阵列信号处理在许多领域中具有重要应用,例如无线通信、声音处理、雷达系统等。
通过阵列信号处理,信号的质量可以得到提高,对于特定目标的检测和定位等任务也更加高效准确。
三、阵列信号处理读研的意义3.1 学术研究意义阵列信号处理涉及到多个学科的知识,包括信号处理、数学、电子工程等。
通过读研,在相关领域进行深入研究,可以掌握先进的理论知识和实践技能,为学术研究做出贡献。
3.2 工程应用意义阵列信号处理在实际应用中有广泛的需求,例如在通信系统中,通过阵列信号处理技术可以提高信号的传输效率和抗干扰能力。
因此,通过读研,可以掌握阵列信号处理的相关原理和技术,为工程应用提供支持。
四、阵列信号处理读研的必备知识4.1 数学基础知识阵列信号处理涉及到许多数学知识,例如线性代数、概率论、信号与系统等。
在读研之前,有一定的数学基础是必要的,可以通过学习相关课程来打好基础。
4.2 信号处理基础知识阵列信号处理是在信号处理的基础上发展起来的,因此在读研之前,需要对信号处理的基本概念、方法和算法等有一定的了解。
可以通过学习相关课程或自学来掌握信号处理的基础知识。
4.3 电子工程知识阵列信号处理涉及到电子工程的相关知识,例如电路设计、电磁波传播等。
在读研之前,可以通过学习相关课程或进行实践操作来掌握电子工程的基本理论和实践技能。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
PN S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
目录1绪论 (1)1.1引言 (1)1.2研究背景 (1)1.3本文研究的内容 (3)2阵列信号模型 (4)2.1ULA窄带信号数学模型 (4)2.2波束形成和波束响应 (6)2.3波束图及其参数 (7)3加窗波束的形成 (11)3.1常用的窗函数 (11)3.2加窗波束 (12)3.3D OLPH-C HEBYSHEV窗 (15)3.4实例仿真 (17)4结束语 (20)参考文献 (21)致谢 (22)附录 (24)阵列信号处理中窗函数的研究1绪论1.1引言阵列信号处理讨论从一个传感器阵列所收集的信号中提取信息,简单的理解就是增强有用信号,抑制无用的干扰和噪声,提取信号的有用特征,获取信号源的属性。
与传统的单个传感器接收信号的一维信号处理相比,阵列信号处理具有灵活的波束控制、较高的信号增益、较强的干扰抑制能力以及很好的空间分辨能力等多种优点,这些优势也是阵列信号处理理论不断发展的根本动力。
阵列信号处理在雷达、声纳、通信、射电天文、医学诊断和治疗、地震学等领域都有很广泛的应用。
阵列信号处理最早应用于雷达,早在上世纪三十年代,阵列天线就得到了实际的应用,在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用;在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段,同时,阵列信号处理也是改善蜂窝和个人通信服务系统质量和容量的一种强有力的工具;地震信号处理的阵列被广泛地用于石油勘探和地下核试验的检测;射电天文领域采用了极大规模的阵列来实现高分辨率;在医学诊断领域,通过X射线断层摄影技术,我们试图从阵列收集的数据中重构物体的横截断面图;在声纳系统中,被动声纳的一个重要应用是对潜艇进行检测与跟踪,等等。
1.2研究背景阵列信号处理是现代信号处理的一个重要分支,它的基本理论源于Wiener滤波,理论研究自上世纪六十年代开始,在五十年的发展中,阵列信号处理主要经历了三个阶段:六十年代到七十年代,自适应波束形成技术开始发展并逐渐成熟,诸如自适应相控天线、自适应波束操纵天线等;七十年代主要集中在自适应零点控制上,诸如自适应滤波、自适应置零技术、自适应副瓣对消等;八十年代主要集中在空间谱估计上,诸如特征空间正交谱估计、最大似然谱估计、最大熵谱估计等。
阵列信号处理概述研究背景及意义和波达方向估计技术1 概述阵列信号处理作为信号处理的一个重要分支,在通信、雷达、声呐、地震、勘探、射电天文等领域获得了广泛应用和迅速发展。
对所有探测系统和空间传输系统,空域信号的分析和处理是其基本任务。
将多个传感器按一定方式布置在空间不同位置上,形成传感器阵列。
并利用传感器阵列来接收空间信号,相当于对空间分布的场信号采样,得到信号源的空间离散观测数据。
阵列信号处理的目的是通过对阵列接收的信号进行处理,增强所需要的有用信号,抑制无用的干扰和噪声,并提取有用的信号特征以及信号所包含的信息。
与传统的单个定向传感器相比,传感器阵列具有灵活的波束控制、高的信号增益、极强的干扰抑制能力以及高的空间分辨能力等优点,这也是阵列信号处理理论近几十年来得以蓬勃发展的根本原因。
阵列信号处理的最重要应用包括:①信(号)源定位——确定阵列到信源的仰角和方位角,甚至距离(若信源位于近场);②信源分离——确定各个信源发射的信号波形。
各个信源从不同方向到达阵列,这一事实使得这些信号波形得以分离,即使他们在时域和频域是叠加的;③信道估计——确定信源与阵列之间的传输信道的参数(多径参数)。
阵列信号处理的主要问题[]1包括:波束形成技术——使阵列方向图的主瓣指向所需方向;零点形成技术——使天线的零点对准干扰方向;空间谱估计——对空间信号波达方向的分布进行超分辨估计。
空间谱估计技术是近年来发展起来的一门新兴的空域信号处理技术,其主要目标是研究提高在处理带宽内空间信号(包括独立、部分相关和相干)角度的估计精度、角度分辨率和提高运算速度的各种算法。
在所有利用空间谱估计技术来实现对到达方向(DOA)估计的方法中,以R. O. Schmidt 提出的MUSIC 算法最为经典且最有代表性。
Schmidt 在MUSIC 算法中提出了信号子空间的概念,即在维数大于信号个数的观测空间中进行子空间的划分,找出仅由噪声贡献生成的空间(噪声子空间)和由信号和噪声共同作用产生的空间,根据这两个子空间的基底以及阵列流型即可得到待测方向满足的方程,由其解得到来波方向的估计。