自适应阵列信号处理
- 格式:ppt
- 大小:411.00 KB
- 文档页数:15
1 阵列信号模型通常情况下,考虑M 元等距线阵,阵元间距为d ,且假设阵元均为各向同性阵元。
如图2.1所示,每个阵元后面接一路接收机,各阵元接收的信号进入自适应阵列处理器进行加权相加,得到阵列输出。
远场处有一个期望信号和P 个窄带干扰以平面波入射(波长为λ),期望信号到达角度为0θ,P 个干扰的角度分别为()1,2,,k k p θ= ,图2.1中Rc 代表各阵元接收机,()()()12,,,M x t x t x t 分别为M 个接收通道的输出信号,12,,,M w w w 分别为对各阵元通道接收信号的加权值。
()t w 阵列输出波前(等相位图2.1 自适应阵列空间位置关系示意图阵列接收的快拍数据可以表示为()()()t t t =+X AS n(2-1)式中,()t X 为1M ⨯阵列接收数据向量,()()()()12,,,TM t x t x t x t =⎡⎤⎣⎦X 。
[]T表示对矩阵进行转置,()t n 为1M ⨯的噪声向量,()()()()01,,,TP t s t s t s t =⎡⎤⎣⎦S 为信号复包络向量,()k s t 为第k 个信源复包络,()()()01,,,P θθθ=⎡⎤⎣⎦A a a a 为信号指向矩阵,其中,()()(1)1,,,,0,1,i iTj j N i i e e i P ββθ-⎡⎤===⎣⎦a a 为第i 个信号源的导向矢量,即2sin i i d πβθλ=(2-2)定义阵列的协方差矩阵为()()2H H x s n E t t σ⎡⎤==+⎣⎦R X X AR A I (2-3)式中,()()H s E t t ⎡⎤=⎣⎦R S S 为信号的协方差矩阵,I 为M 维单位矩阵,2n σ为阵元的噪声功率,本文中约定,[]T表示转置,[]*表示共轭,[]H表示共轭转置。
式(2-3)常由接收数据采样协方差矩阵ˆx R 代替,即()()11ˆNH xiii t t N==∑R x x(2-4)如图2.1所示的自适应阵列模型,阵列的M 个通道接收信号经加权处理后,最后的输出信号为()()()1MH i i i y t w x t t *===∑w x(2-5)阵列的方向图()p θ定义为()()H p θθ=w a(2-6)调整自适应阵列的权矢量w ,可以改变阵列的方向图,即改变各个方向上入射信号增益。
自适应信号处理-唐正必马长芳科学出版社赵春晖哈尔滨工程大学出版社本书全面系统地阐述了自适应信号处理的理论及其应用,包括确定性信号与随机过程(平稳与非平稳信号)滤波检测理论,不用训练序列的本身自适应的盲信号处理理论,从一维到多维、线性到非线性、经典自适应到神经智能自适应等近代信号处理。
它将信息论、时间序列分析、系统辨识、谱估计理论、高阶谱理论、优化理论、进化计算,以及神经网络理论等学科知识综合而成一体。
本书共十章,内容有自适应滤波基本原理、自适应LMS滤波器、自适应RLS滤波器、自适应格型滤波器、自适应递归滤波器、自适应谱线增强与谱估计、自适应噪声干扰抵消器、自适应均衡器、自适应阵列处理与波束形成,以及自适应神经信息处理。
对于盲信号处理的理论与方法,将分散在最后三章中论述。
本书取材新颖,内容丰富;叙述深入浅出,系统性强,概念清楚。
它总结了自适应信号处理的最新成果,其中包括作者在该领域内所取得的科研成果,是一部理论联系实际的专业理论专著。
可作为信息与通信、雷达、声纳、自动控制、生物医学工程等专业的研究生的教材或主要参考书,也可供广大科研人员阅读。
第1章绪论1.1 自适应滤波的基本概念1.2 自适应信号处理的发展过程1.3 自适应信号处理的应用第2章维纳滤波2.1 问题的提出2.2 离散形式维纳滤波器的解2.3 离散形式维纳滤波器的性质2.4 横向滤波器的维纳解第3章最小均方自适应算法3.1 最陡下降法3.2 牛顿法3.3 LMS算法3.4 LMS牛顿算法第4章改进型最小均方自适应算法4.1 归一化LMS算法4.2 块LMS算法4.3 快速块LMS算法第5章最小均方误差线性预测及自适应格型算法5.1 最小均方误差线性预测5.2 Lev ins on-Durbi n算法5.3 格型滤波器5.4 最小均方误差自适应格型算法第6章线性最小二乘滤波6.1 问题的提出6.2 线性最小二乘滤波的正则方程6.3 线性最小二乘滤波的性能6.4 线性最小二乘滤波的向量空间法分析第7章最小二乘横向滤波自适应算法7.1 递归最小二乘算法7.2 R LS算法的收敛性7.3 R LS算法与LMS算法的比较7.4 最小二乘快速横向滤波算法第8章最小二乘格型自适应算法8.1 最小二乘格型滤波器8.2 LSL自适应算法第9章非线性滤波及其自适应算法9.1 非线性滤波概述9.2 Volterra级数滤波器9.3 LMS Volterra级数滤波器9.4 R LS Volterra级数滤波器9.5 形态滤波器结构元优化设计的自适应算法9.6 自适应加权组合广义开态滤波器9.7 层叠滤波器的自适应优化算法第10章自适应信号处理的应用10.1 自适应模拟与系统辨识10.2 自适应逆模拟10.3 自适应干扰对消10.4 自适应预测计算机实验实验1 LMS算法的收敛性实验2 LMS自适应线性预测实验3 LMS自适应模型识别实验4 LMS自适应均衡实验5 RLS自适应线性预测实验6 RLS自适应模型识别实验7 RLS自适应均衡实验8 自适应格型块处理迭代算法仿真附录A 矩阵和向量A.1 矩阵A.2 向量A.3 二次型……附录B 相关矩阵附录C 时间平均相关矩阵参考文献《自适应信号处理》课程教学大纲课程编号:S0105603C课程名称:自适应信号处理开课院系:电子与信息技术研究院任课教师:邹斌(副教授)胡航(副教授)先修课程:数字信号处理适用学科范围:信息与通信工程学时:36 学分:2.0开课学期:春季学期开课形式:课堂讲授课程目的和基本要求:本课程是一门理论性较强、并在实际中获得广泛应用的课程。
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
多通道信号处理中的自适应阵列处理技术自适应阵列处理技术在多通道信号处理中扮演着重要的角色。
它是一种利用多个传感器接收并处理信号的方法,通过选择性地增强所需信号、抑制干扰信号,提高通信质量和可靠性。
本文将通过介绍自适应阵列处理技术的原理和应用领域,探讨其在多通道信号处理中的重要性和优势。
一、自适应阵列处理技术原理自适应阵列处理技术基于波束形成和空间滤波的原理,通过计算传感器阵列中各个传感器之间的差异信息,调整传感器的增益和相位,实现对指定方向信号的增强以及对干扰信号的抑制。
1. 波束形成波束形成是指通过合理选择传感器的权值,使得波束指向指定的方向,从而增强来自该方向的信号。
传感器阵列接收的信号中,如果目标信号来自于阵列的指定方向,那么经过相位和幅度的调整后,信号在阵列中各个传感器上的相位将趋于一致,从而在合成波束上形成最大增益。
2. 空间滤波空间滤波是指对传感器阵列接收到的信号进行加权叠加,通过调整权值达到抑制干扰信号的目的。
通过传感器阵列之间的相位差异来调整权值,可以选择性地滤除不需要的信号,提高接收信号的质量。
二、自适应阵列处理技术的应用领域自适应阵列处理技术具有广泛的应用领域,包括无线通信、雷达与声纳、医学图像处理等。
1. 无线通信在无线通信系统中,自适应阵列处理技术可以用于空中接口中的信号增强和干扰抑制。
通过自适应阵列处理技术,可以提高无线信号的接收灵敏度和抗干扰能力,增强通信质量和可靠性。
2. 雷达与声纳自适应阵列处理技术在雷达与声纳系统中有着重要的应用。
通过波束形成和空间滤波,可以实现对目标信号的精确定位和抑制来自其他方向的杂乱信号,提高雷达与声纳系统的探测性能。
3. 医学图像处理在医学领域,自适应阵列处理技术可用于医学图像处理中的噪声抑制和信号增强。
通过选择性地增强医学图像中的有用信息,可以提高图像的清晰度和准确性,辅助医生进行诊断和治疗。
三、自适应阵列处理技术的优势自适应阵列处理技术在多通道信号处理中具有许多优势,以下是其中几个主要的优势:1. 强抗干扰能力通过自适应阵列处理技术,可以实现对干扰信号的抑制,提高信号的纯净度和可靠性。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ 为信号子空间,是N 维线性空间中的P 维子空间,记为P NS 。
PN S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X WHW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。