自适应阵列信号处理
- 格式:ppt
- 大小:411.00 KB
- 文档页数:15
1 阵列信号模型通常情况下,考虑M 元等距线阵,阵元间距为d ,且假设阵元均为各向同性阵元。
如图2.1所示,每个阵元后面接一路接收机,各阵元接收的信号进入自适应阵列处理器进行加权相加,得到阵列输出。
远场处有一个期望信号和P 个窄带干扰以平面波入射(波长为λ),期望信号到达角度为0θ,P 个干扰的角度分别为()1,2,,k k p θ= ,图2.1中Rc 代表各阵元接收机,()()()12,,,M x t x t x t 分别为M 个接收通道的输出信号,12,,,M w w w 分别为对各阵元通道接收信号的加权值。
()t w 阵列输出波前(等相位图2.1 自适应阵列空间位置关系示意图阵列接收的快拍数据可以表示为()()()t t t =+X AS n(2-1)式中,()t X 为1M ⨯阵列接收数据向量,()()()()12,,,TM t x t x t x t =⎡⎤⎣⎦X 。
[]T表示对矩阵进行转置,()t n 为1M ⨯的噪声向量,()()()()01,,,TP t s t s t s t =⎡⎤⎣⎦S 为信号复包络向量,()k s t 为第k 个信源复包络,()()()01,,,P θθθ=⎡⎤⎣⎦A a a a 为信号指向矩阵,其中,()()(1)1,,,,0,1,i iTj j N i i e e i P ββθ-⎡⎤===⎣⎦a a 为第i 个信号源的导向矢量,即2sin i i d πβθλ=(2-2)定义阵列的协方差矩阵为()()2H H x s n E t t σ⎡⎤==+⎣⎦R X X AR A I (2-3)式中,()()H s E t t ⎡⎤=⎣⎦R S S 为信号的协方差矩阵,I 为M 维单位矩阵,2n σ为阵元的噪声功率,本文中约定,[]T表示转置,[]*表示共轭,[]H表示共轭转置。
式(2-3)常由接收数据采样协方差矩阵ˆx R 代替,即()()11ˆNH xiii t t N==∑R x x(2-4)如图2.1所示的自适应阵列模型,阵列的M 个通道接收信号经加权处理后,最后的输出信号为()()()1MH i i i y t w x t t *===∑w x(2-5)阵列的方向图()p θ定义为()()H p θθ=w a(2-6)调整自适应阵列的权矢量w ,可以改变阵列的方向图,即改变各个方向上入射信号增益。
自适应信号处理-唐正必马长芳科学出版社赵春晖哈尔滨工程大学出版社本书全面系统地阐述了自适应信号处理的理论及其应用,包括确定性信号与随机过程(平稳与非平稳信号)滤波检测理论,不用训练序列的本身自适应的盲信号处理理论,从一维到多维、线性到非线性、经典自适应到神经智能自适应等近代信号处理。
它将信息论、时间序列分析、系统辨识、谱估计理论、高阶谱理论、优化理论、进化计算,以及神经网络理论等学科知识综合而成一体。
本书共十章,内容有自适应滤波基本原理、自适应LMS滤波器、自适应RLS滤波器、自适应格型滤波器、自适应递归滤波器、自适应谱线增强与谱估计、自适应噪声干扰抵消器、自适应均衡器、自适应阵列处理与波束形成,以及自适应神经信息处理。
对于盲信号处理的理论与方法,将分散在最后三章中论述。
本书取材新颖,内容丰富;叙述深入浅出,系统性强,概念清楚。
它总结了自适应信号处理的最新成果,其中包括作者在该领域内所取得的科研成果,是一部理论联系实际的专业理论专著。
可作为信息与通信、雷达、声纳、自动控制、生物医学工程等专业的研究生的教材或主要参考书,也可供广大科研人员阅读。
第1章绪论1.1 自适应滤波的基本概念1.2 自适应信号处理的发展过程1.3 自适应信号处理的应用第2章维纳滤波2.1 问题的提出2.2 离散形式维纳滤波器的解2.3 离散形式维纳滤波器的性质2.4 横向滤波器的维纳解第3章最小均方自适应算法3.1 最陡下降法3.2 牛顿法3.3 LMS算法3.4 LMS牛顿算法第4章改进型最小均方自适应算法4.1 归一化LMS算法4.2 块LMS算法4.3 快速块LMS算法第5章最小均方误差线性预测及自适应格型算法5.1 最小均方误差线性预测5.2 Lev ins on-Durbi n算法5.3 格型滤波器5.4 最小均方误差自适应格型算法第6章线性最小二乘滤波6.1 问题的提出6.2 线性最小二乘滤波的正则方程6.3 线性最小二乘滤波的性能6.4 线性最小二乘滤波的向量空间法分析第7章最小二乘横向滤波自适应算法7.1 递归最小二乘算法7.2 R LS算法的收敛性7.3 R LS算法与LMS算法的比较7.4 最小二乘快速横向滤波算法第8章最小二乘格型自适应算法8.1 最小二乘格型滤波器8.2 LSL自适应算法第9章非线性滤波及其自适应算法9.1 非线性滤波概述9.2 Volterra级数滤波器9.3 LMS Volterra级数滤波器9.4 R LS Volterra级数滤波器9.5 形态滤波器结构元优化设计的自适应算法9.6 自适应加权组合广义开态滤波器9.7 层叠滤波器的自适应优化算法第10章自适应信号处理的应用10.1 自适应模拟与系统辨识10.2 自适应逆模拟10.3 自适应干扰对消10.4 自适应预测计算机实验实验1 LMS算法的收敛性实验2 LMS自适应线性预测实验3 LMS自适应模型识别实验4 LMS自适应均衡实验5 RLS自适应线性预测实验6 RLS自适应模型识别实验7 RLS自适应均衡实验8 自适应格型块处理迭代算法仿真附录A 矩阵和向量A.1 矩阵A.2 向量A.3 二次型……附录B 相关矩阵附录C 时间平均相关矩阵参考文献《自适应信号处理》课程教学大纲课程编号:S0105603C课程名称:自适应信号处理开课院系:电子与信息技术研究院任课教师:邹斌(副教授)胡航(副教授)先修课程:数字信号处理适用学科范围:信息与通信工程学时:36 学分:2.0开课学期:春季学期开课形式:课堂讲授课程目的和基本要求:本课程是一门理论性较强、并在实际中获得广泛应用的课程。
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
多通道信号处理中的自适应阵列处理技术自适应阵列处理技术在多通道信号处理中扮演着重要的角色。
它是一种利用多个传感器接收并处理信号的方法,通过选择性地增强所需信号、抑制干扰信号,提高通信质量和可靠性。
本文将通过介绍自适应阵列处理技术的原理和应用领域,探讨其在多通道信号处理中的重要性和优势。
一、自适应阵列处理技术原理自适应阵列处理技术基于波束形成和空间滤波的原理,通过计算传感器阵列中各个传感器之间的差异信息,调整传感器的增益和相位,实现对指定方向信号的增强以及对干扰信号的抑制。
1. 波束形成波束形成是指通过合理选择传感器的权值,使得波束指向指定的方向,从而增强来自该方向的信号。
传感器阵列接收的信号中,如果目标信号来自于阵列的指定方向,那么经过相位和幅度的调整后,信号在阵列中各个传感器上的相位将趋于一致,从而在合成波束上形成最大增益。
2. 空间滤波空间滤波是指对传感器阵列接收到的信号进行加权叠加,通过调整权值达到抑制干扰信号的目的。
通过传感器阵列之间的相位差异来调整权值,可以选择性地滤除不需要的信号,提高接收信号的质量。
二、自适应阵列处理技术的应用领域自适应阵列处理技术具有广泛的应用领域,包括无线通信、雷达与声纳、医学图像处理等。
1. 无线通信在无线通信系统中,自适应阵列处理技术可以用于空中接口中的信号增强和干扰抑制。
通过自适应阵列处理技术,可以提高无线信号的接收灵敏度和抗干扰能力,增强通信质量和可靠性。
2. 雷达与声纳自适应阵列处理技术在雷达与声纳系统中有着重要的应用。
通过波束形成和空间滤波,可以实现对目标信号的精确定位和抑制来自其他方向的杂乱信号,提高雷达与声纳系统的探测性能。
3. 医学图像处理在医学领域,自适应阵列处理技术可用于医学图像处理中的噪声抑制和信号增强。
通过选择性地增强医学图像中的有用信息,可以提高图像的清晰度和准确性,辅助医生进行诊断和治疗。
三、自适应阵列处理技术的优势自适应阵列处理技术在多通道信号处理中具有许多优势,以下是其中几个主要的优势:1. 强抗干扰能力通过自适应阵列处理技术,可以实现对干扰信号的抑制,提高信号的纯净度和可靠性。
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ 为信号子空间,是N 维线性空间中的P 维子空间,记为P NS 。
PN S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X WHW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
1.自适应信号处理基本概念,解决的问题,适用条件下(平稳、短时平稳),结构分类。
自适应信号处理:是研究一类结构可变或可以调整的系统,它通过自身与外界环境的接触来改善自身对信号处理的性能。
通常这类系统是时变的非线性系统,可以自动适应信号传送变化的环境和要求。
自适应系统和一般系统类似,可以分为开环系统(闭环:计算量小,收敛慢;开环:计算量大,收敛快)和闭环系统两种类型。
开环系统仅由输入确定,而闭环不仅取决于输入,还依赖于系统输出的结果。
自适应信号处理所研究的信号既可以是随机平稳信号,也可以是局部平稳随机信号,也可以是窄带或者是宽带信号。
2、信号相关矩阵与其性质,梯度运算:输入信号的相关矩阵:R E[X*X T]=,相关矩阵R是厄米特矩阵,即满足R* = R T。
作为厄米特矩阵,它具有以下性质:①对应于R的不同特征值的特征向量都是正交的。
②R是正定(或半正定)矩阵,它所有的特征值都为实数,且大于或等于零。
③所有特征值之和等于矩阵R的迹,即为输入信号的功率。
[定义一个幺向量:1=[1 1 … 1]T,于是,R的特征值之和为1T∧1=1T Q H RQ1= = 上式等号右边的求和即为矩阵R的迹(矩阵主对角线所有元素之和),亦即系统输入信号的功率。
]④信号相关矩阵R可以被分解为一个实对称矩阵和一个实反对称矩阵,即:R=R a+jR b ,其中,实矩阵R a、R b分别满足条件:R a T=R a和R b T=-R b⑤若W为L+1维的权向量,则对相关矩阵R,存在关于W的一个瑞利商,且对于所有W的瑞利商均为实数。
瑞利商Ray(W)=⑥R可分解为R=Q Q T where Q [q0,q1,… q l],信号子空间:R s非零特征值对应的特征向量成的子空间。
Span{q0,q1,… q s}噪声子空间:信号子空间的正交补空间零特征值→特征向量。
Span{ q s+1,q s+2,… q l+1}梯度运算:=[]T式中分别是向量W的第l个元素的实部和虚部,即;ε即为。
阵列信号处理是信号处理的一个年青的分支,属于现代信号处理的重要研究内容之一,其应用范围很广,可用于雷达、声呐、通信、地震勘察、射电天文和医用成像等众多领域。
阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形成的传感器阵列(尽管采用的传感器的类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器的功能是相同的,它是连接信号处理器和感兴趣的空间纽带),用传感器阵列发射能量和(或)接收空间信号,获得信号源的观测数据并加以处理。
阵列信号处理的目的是从这些观测数据中提取信号的有用特征,获取信号源的属性等信息。
目前,阵列信号处理在雷达及移动通信等领域有着广泛而重要的应用。
在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用。
在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段。
本论文首先介绍阵列信号处理的基础知识。
在此基础上,着重讨论阵列波束形成技术,非理想线性阵列的雷达信号波达方向和多普勒频率估计,均匀圆形阵列的信号波达方向估计和复杂信号的波达方向及参数估计等四方面内容。
这些内容都是阵列信号处理领域的研究热点。
它们无论对阵列信号处理的理论发展还是实际应用,都有重要的意义。
目前,人们普遍关注在阵列响应矢量未知情况下,自适应波束形成问题,即盲自适应波束形成技术。
本文第一方面介绍了最基本的阵列波束形成方法,即最小均方误差波束形成器,线性约束最小方差波束形成器和基于特征空间的波束形成器(ESB)。
在此基础上,提出一个基于特征空间的盲自适应波束形成算法。
此算法首先根据高分辨波达方向估计方法,估计信号源的波达方向,然后以此方向形成约束导向矢量,进而计算出ESB波束形成算法的最优权矢量,最后,对期望目标形成笔状波束。
此算法能够有效地抑制信号的对消现象,并且能够应用于在波束中有多个期望信号的场合。
当阵列存在各种误差时,一般高分辨波达方向估计方法(如MUSIC)的估计性能严重下降。
lms 自适应滤波算法在mvdr 波束形成中的运用概述说明1. 引言1.1 概述本文旨在探讨LMS自适应滤波算法在MVDR波束形成中的运用。
随着科技的飞速发展,无线通信系统越来越普及和重要,而波束形成技术作为一种提高通信性能和降低干扰的关键技术,在无线通信领域得到了广泛应用。
LMS自适应滤波算法是一种经典且常用的自适应滤波方法,具有快速收敛和较好的稳定性等优势。
本文将分析LMS自适应滤波算法的原理、工作原理以及特点与优势,然后探究MVDR波束形成技术的基本原理、算法流程以及应用场景。
最后将重点研究LMS自适应滤波算法在MVDR波束形成中的运用,并进行实验结果与讨论。
1.2 文章结构文章结构如下所示:首先引言部分对本文进行概述说明;之后,第二部分将详细介绍LMS自适应滤波算法的原理、工作原理以及特点与优势;第三部分将介绍MVDR波束形成技术的基本原理、算法流程以及应用场景;第四部分将重点探究LMS自适应滤波算法在MVDR波束形成中的运用,包括研究背景、算法设计与分析以及实验结果与讨论;最后,第五部分将给出结论和展望,总结研究成果,并对未来研究方向进行展望。
1.3 目的本文的目的是通过概述说明LMS自适应滤波算法在MVDR波束形成中的运用。
旨在深入了解LMS自适应滤波算法的原理和特点,并探讨其在MVDR波束形成中的优势和适用性。
通过分析实验结果和讨论,掌握LMS自适应滤波算法在MVDR波束形成中的性能表现,为无线通信系统设计和优化提供参考依据。
最终目标是推动无线通信技术的发展,提高通信质量和系统性能。
2. LMS自适应滤波算法2.1 原理介绍LMS自适应滤波算法是一种常见的自适应信号处理方法。
它基于最小均方误差准则,通过不断调整滤波器系数,使得滤波后的输出信号与期望信号之间的均方误差最小化。
该算法可以有效地抑制干扰和噪声,并提高系统性能。
在LMS算法中,假设输入信号为x(n),期望输出为d(n),滤波器的系数为w(n)。
自适应阵列处理
自适应阵列处理是指利用阵列信号处理的原理和方法,对接收到的信号进行自适应处理,并输出经过处理的信号。
自适应阵列处理采用了反馈控制原理,通过对信号处理的过
程进行实时监测和调整,使得处理后的信号质量得到优化,从而提高了信号处理的效率和
准确性。
自适应阵列处理的优点主要有以下几点:
1. 增强信号的辨识能力:随着天线个数的增加,阵列的接收和处理能力得到了大幅
提升,从而可以更加准确地识别和分离不同频率和不同方向的信号。
2. 减少信号的干扰:利用自适应滤波算法可以有效地抵消噪声和干扰信号,提高信
号的干扰抵抗能力,从而更加准确地识别目标信号。
3. 提高信号处理的速度:利用自适应阵列处理可以实现对多个信号的实时处理和分析,从而能够更快地捕捉目标信号,并作出及时的决策。
4. 提高系统的可靠性:自适应阵列处理的实现可以自动调整滤波器的参数,从而更
好地适应不同的信号环境,提高系统的可靠性和鲁棒性。
自适应阵列处理在多个领域得到了广泛的应用,包括雷达、无线通信、物联网等领域。
随着技术的不断发展和应用场景的不断拓展,自适应阵列处理在未来将得到更加广泛的应
用和发展。