单一元件的正弦交流电路
- 格式:doc
- 大小:184.00 KB
- 文档页数:9
单一元件正弦交流电路
1、分析方法
单一元件的正弦交流电路分析方法是相同的,即(1)列出电压电流瞬时值的关系式;
(2)设电压(或电流)为参考正弦量,而后根据电压和电流关系求得电流(或电压),并用三角函数式、正弦波形图、相量图和相量式表示。
(3)比较电压和电流的相位和大小关系。
(4)求出瞬时功率,讨论有功功率和无功功率。
注意:无功功率不是无用的,它是感性负载和容性负载所需要的。
若电路中存在电感或电容元件,则这些元件和电源之间发生能量交换,能量交换的规模也就是无功功率。
2、电量关系
对于单一元件交流电路,电路中电量之间关系如表1所示。
表1单一元件交流电路电量关系
电阻R
电感L
电容C
基本规律Ri u =R t
i
L
u d d L =t
u C
i d d =直流电路RI
U =R 相当于短路
相当于开路
电阻电抗R
fL L X πω2L ==fC C X πω211
C =
=有效值关系
RI
U =R I
X U L L =I
X U C C =
相位关系u R 和i 同相u L 超前i
︒
90u C 滞后i
︒
90相量关系
I R U =R I jX U L L
=I jX U C
C -=
相量图
有功功率R R IU P =0L =P 0C =P 无功功率
R =Q L
R IU Q =C
C IU Q -=。
单相正弦交流电路本章主要介绍了正弦交流电的基本概念、正弦交流电路的分析方法和正弦交流电路功率因数问题。
本章要求:1、 掌握正弦交流电基本概念,特别是有效值,初相位和相位差2、 掌握正弦量表示方法,特别是相量表示方法。
3、 熟悉单一参数电路的电压、电流关系及能量转换关系4、 了解电路基本定律的相量形式5、 能够对一般正弦交流电路进行分析和计算,掌握交流电路的功率及其计算。
6、 了解功率因数提高的意义及方法 引言:电路的物理量(电压、电流等),按其波形类型,大致可分为正弦交流电路:若电路中的电源(电动势)及由此产生的电压、电流均为正弦交流量,则这样的电路称为正弦交流电路。
若电源是单相的,就是单相正弦交流电路(举几个实例如日光灯电路、电风扇电路等),三相电源供电的则是三相正弦交流电路。
交流电应用很广,举例说明。
周期量交流量(大小、方向均做周期性变)非周期量(如电容充电电压)脉动量(大小做周期性变化,而方向不变)如:i 非正弦交流量,如:i正弦交流量i§3-1正弦交流电的基本概念概念:大小、方向均随时间作正弦规律变化的饿电流、电压、电动势等物理量均称为正弦交流电,简称交流电或正弦量 正弦量的波形图如下:三角函数表示:u=U m sin(wt+ϕu ) i=I m sin(wt+ϕi ) u 、i 为电流、电压的瞬时值周期、频率、角频率周波:变化一个循环称为一个周波周期T :正弦量变化一个周波所需的时间单位S频率f :每秒钟变化的周波数,单位:Hz, f=1/T,工作频率f=50Hz,周期T=0.02S 角频率w :每秒钟变化的弧度数,单位:弧度/秒(rad/s ),w=2πf=Tπ2f=50Hz 时,w=314rad/s一、幅值:最大的瞬时值,用大写字母加下标m 表示,如U m 、I m 二、初相:u=U m sin(wt+ϕu )正弦量三要素U m 、I m —最大值(最值),表示正弦量大小w —角频率,反映正弦量变化快慢 ϕu 、ϕi —初相位,反映t=0时刻正弦量的瞬时值大小,即正弦量初始值大小。
电子教案课题单一元件的单相正弦交流电路课时3课时课型新授课教学目标(知识与技能、过程与方法、情感态度与价值观)应知:1.理解单一元件(纯电阻、纯电感、纯电容)在交流电路中,元件两端电压与流过元件的电流关系特点,理解它们对直流电与交流电的不同阻碍作用。
2.理解电路瞬时功率、有功功率、无功功率的概念及表示方法。
应会:会分析由R、L、C构成的简单电路。
教学重点、难点教学重点:单一元件交流电路中,元件两端电压与流过元件的电流关系特点教学难点:电路瞬时功率、有功功率、无功功率的概念及表示方法。
教学方法实验法、比较法教学手段实验演示、多媒体投影教学过程(教学环节、教师活动、学生活动、教学说明)一、导入新课由日常生活中呈现不同性质(电阻、电感、电容)的电器,以它们在交流电路中的作用是否相同提问,引出本节内容。
二、讲授新课教学环节1:纯电阻电路(一)纯电阻电路电阻两端电压与流过电流关系教师活动:“做中教”,演示纯电阻电路。
学生活动:(1)实验一电路,灯与电阻串联,当双刀双掷开关分别接通直流电源和交流电源(直流电压和交流电压的有效值相等)观察灯的亮度情况,思考电阻对直流电、交流电的阻碍作用。
(2)实验二电路,将交流电压表、交流电流表接入电路,输入端用低频信号发生器加0.5Hz正弦交流电,观察电压表、电流表指针摆动情况。
(3)实验二电路,将输入正弦交流电信号频率变为50 Hz,记录电压表与电流表读数,总结纯电阻两端电压与流过电流之间的关系。
教师总结:(1)实验一,灯的亮度相同,表明电阻对直流电和交流电的阻碍作用相同。
(2)实验二,当输入端加低频交流电时,可以观察电压表与电流表指针摆动步调一致,表明电阻两端电压和流过电阻的电流是同相的。
(3)电压表读数(交流电压有效值)与电流表读数(交流电流有效值)及电阻值之间符合欧姆定律关系。
(二)纯电阻电路的功率教师活动:给出功率曲线,介绍瞬时功率、有功功率的概念及计算公式。
学生活动:掌握功率计算公式,并通过练习巩固。
2.2单一参数的正弦交流电路本节将讨论电路由某些单一参数元件组成时,在正弦电源作用下,电压、电流关系的相量形式及其功率表现。
2.2.1电阻元件的正弦交流电路(1)电阻元件上电压和电流的关系纯电阻电路是最简单的交流电路,如图2-8所示。
我们所接触到的白炽灯、电炉、电烙铁等都属于电阻性负载,它们与交流电源连接组成纯电阻电路。
图2-8纯电阻电路在图2-8中,电压与电流的关系在任何瞬时都服从欧姆定律,即u=Ri设流过电阻的正弦电流则电阻两端的电压与其流过的电流是同频率的正弦量,它们的大小和相位关系分别为U=RI(2-16)φu=φi(2-17)可见,对于电阻的正弦交流电路,电压的有效值(或幅值)与电流的有效值(或幅值)成正比,且电压与电流同相。
由式(2-16)、式(2-17)可得电阻元件电压与电流的相量关系为上式称为电阻元件电压电流关系的相量形式,或称为相量形式的欧姆定律。
它全面反映了电阻元件上正弦电压与电流的大小关系和相位关系。
其相量模型和相量图如图2-9所示。
图2-9电阻元件的相量模型和相量图(2)电阻元件的功率①瞬时功率电阻在某一时刻消耗的电功率叫做瞬时功率,它等于电压u与电流i瞬时值的乘积,并用小写字母p表示。
设流过电阻的电流、电压瞬时值分别为:则据此可画出电阻元件瞬时功率的波形图,如图2-10所示。
图2-10电阻元件瞬时功率的波形图由图2-10可以看出,在任何瞬时,恒有p≥0。
这说明电阻是一种耗能元件,它将电能转为热能。
②平均功率由于瞬时功率是随时间变化的,其实用意义不大,因此工程上常采用平均功率。
平均功率是指瞬时功率在一个周期内的平均值,用大写字母P表示。
即由于U=RI,因此电阻的平均功率也可表示为平均功率表示电阻实际消耗的功率,又称为有功功率,其单位为瓦(W)。
由于通常所说的功率都是指平均功率,因此简称功率。
例如功率为40W的白炽灯,是指白炽灯在额定工作情况下,所消耗的平均功率为40W。
注意:上式与直流电路中电阻功率的表达式相同,但式中的U、I不是直流电压、电流,而是正弦交流电的有效值。
单一元件的正弦交流电路交流电纯电阻电路公式(电压与电流的关系及电功率)电压与电流公式将一个电阻接到交流电源上,如右图所示。
电压和电流的关系可以根据欧姆定律来确定。
即:上述公式表面,交流纯电阻电路的基本性质是电流瞬时值与电阻两端电压的瞬时值成正比。
电阻两端电压有效值U和电阻中流过的电流有效值I的关系可由欧姆定律得出:在电阻大小一定时,电压增大,电流也增大。
电压为零,电流也为零。
即电流的正弦曲线与电压的正弦曲线波形起伏一致。
所以在电阻负载电路中电压与电流是同相位的。
}交流电功率公式由于交流电路的电压和电流都随时间而变化,在任意瞬间,电压瞬时值u与电流瞬时值i的乘积为瞬时功率,用“p”表示:即:由上述公式可以得知:电阻元件上瞬时功率由两部分组成,第一部分是常熟,第二部分是幅值为,并以2ω的角频率随时间按余弦规律变化的变量。
上右图波形图中虚线所示,p为功率随时间变化的波形。
它在一个周期内总是大于零,表面电阻元件总是吸收电能,即消耗功率。
瞬时功率虽然能表面功率在一周期内的变化情况,但是其数值不便于测量和计算,其实际意义不大。
人们通常所说的电路的功率都是指瞬时功率在一周期内的平均值,称为平均功率或有功功率,以大写字母“P”表示,经数学推算可得:其单位为瓦塔,由上式可见,当电压和电流以有效值表示时,纯电阻电路中的平均功率的表示式具有和直流电路相同的形式。
{从交流电纯电感电路中感抗/电压/电流/电功率的关系了解电感的作用一个具有电感磁效应作用,其直流电阻值小到可以忽略的线圈,就可以看作是一个纯电感负载。
如日光灯电路的整流器,整流滤波电路的扼流圈,感应熔炼炉的感应圈,电力系统中限制短路电流的电抗器等,都可以看作是电感元件。
电感元件用符“”表示。
感抗与电流和电压的关系当交流电通过线圈时,在线圈中产生自感电动势。
根据电磁感应定律(楞次定律),自感电动势总是阻碍电路内电流的变化,形成对电流的“阻力”作用,这种“阻力”作用称为电感电抗,简称感抗。
用符号X L表示,单位也是欧姆。
实验证明,线圈的电感L越大,交流电的频率f越高,则其感抗X L就越大,它们之间的关系为:上述公式中:f:表示交流电的频率,单位Hz;…L:表示自感系数;单位为亨利(H)X L:线圈的感抗,单位为欧姆(Ω)上面的公式表明,当电感系数一定时,感抗与频率成正比,即电感元件具有通低频率阻高频率特性。
当f=0时,X L=0。
这说明感抗对直流电不起阻碍作用。
所有在直流电路中,可将线圈看成是短路。
如右图所示的纯电杆电路中,如果线圈两端加上正弦交流电压u,理论证明,在纯电感电路中线圈两端电压有效值U 与线圈中电流有效值I之间的关系为:上述公式表明,电感器元件上电压有效值与电流有效值也满足欧姆定律。
但是应当注意,瞬时值之间不满足这种关系。
根据电磁感应定律分析,u与i的变化关系如下图(左)所示,从图中可以知道,电感上电压u总是超前i 90°。
用相量图表示见下右图:【按逆时针方向,I L相量在U L相量之后90°,即I L滞后U L 90°。
纯电感电路中的电功率瞬时功率:纯电感电路的瞬时功率等于电压u L和电流i L瞬时值乘积。
设i L=I Lm sinωt 则U L=U Lm sin(ωt+90°)P=U L I L sinωt做出瞬时功率曲线图,如右图所示。
有功功率:由上右图瞬时功率波形图可见,瞬时功率在第一个和第三个1/4周期内为正值,它表示电感线圈从电源中获得电能,转换为磁能贮藏于先圈内;在第二个和第四个1/4周期内为负值,表示电感将贮藏的磁场能转换为电能,随电流送回电源。
由曲线图还可以看出,在一个周期内,正方向和负方向曲线所包围的面积相等。
它表示瞬时功率在一个周期内的平均值等于零,也就是说,在纯电感电路中,不消耗电能,而只与电源进行能量的交换。
所以在一个周期内的有功功率为零。
无功功率::纯电感电路中瞬时功率的最大值叫做无功功率,它表示线圈与电源之间能量交换规模的大小,用字母Q L表示。
上述公式中:Q L:表示电路的无功功率,单位为乏(Var)或Kvar;U L:表示线圈两端电压的有效值(单位,伏特、V)I L:表示流过线圈电流的有效值(单位,安、A)X L:表示线圈的感抗(单位欧姆、Ω)电容器原理和计算公式及电容单位换算-电容器原理在生产及生活实践中,科学家们发现,凡是被绝缘隔开的两个导体之间加以电压时,则接在高电位的导体就能容纳正电荷,接在低电位的导体能容纳负电荷。
由此可见,上述导体和绝缘所构成的整体有容纳电荷的能力,这种能力叫做电容。
而这个整体就叫做电容器。
电容计算公式实践证明:任一电容器容纳电荷的情况和一个篮球容纳气体的情况类似。
篮球大气的气压越大,则容纳的气体越多;电容器所加电压越大,则容纳的电荷也越多。
这样一来,要衡量它容纳电荷的本领,就必须在同一电压下来衡量,单位电压下所能容纳电荷的多少叫电容,用C表示,单位法拉:上公式中q是电容器在外家电压U时所容纳的电荷量。
实际使用中常见的电容器的容量在其被制造出来时都有表明,电容器元件表面的数字或者色环就包含了容量信息。
1法拉等于1库仑每伏特,即电容为1法拉的电容器,在正常操作范围内,每增加1伏特的电势差可以多储存1库仑的电荷。
电容单位换算)电容的容量单位是法拉(用字母F表示),但是在实际应用上,法拉这一单位太大了。
往往使用最多的是微法(uF)或皮法(PF)。
1F=1000,000微法=106微法(uF)1uF=1000,000皮法=106皮法(PF)电容的大小与电容器的几何尺寸和介质的性质有关。
除了电容器有电容外,在实际中,电气设备、线路与部件都具有自然形成的电容。
如较长的输电线之间,较长的电缆都具有电容。
,交流纯电容电路中电容的容抗、容量和频率以及电压与电流的关系电容容抗如果不考虑电容器本身存在的泄露电阻影响,可以认为电容器是一个纯电容负载。
当电容器两端接在交流电压上,在电压由零增至最大时,对电容器充电,有一充电电流。
在电压由最大值降低至零时,电容器放电,有一放电电流。
如右图所示。
由于充电和放电在电路中形成了电流。
但是电容器存储电荷的能力并不是无限制的,积有了电荷或积满了电荷时,就对电流表现有样一种抗拒作用,这种抗拒作用称为电容电抗,简称容抗。
用符号Xc表示,单位是欧姆。
从实验得知:电容器的电容C越大,频率f越高,则其容抗Xc就越小。
他们之间的关系为:上述公式中:π=f:表示频率,单位赫兹(Hz)C:表示电容容量,单位法(F)>由上式可见:当电容C一定时,容抗Xc与频率成正比,即电容元件具有通高频阻低频特性。
当f=0时,XC=∞(无限大)。
即直流电通不过电容器,可视为开路。
电容两级电压与电流的关系理论证明,在纯电容电路中,电容器两级间电压的有效值Uc与电路中电流的有效值Ic之间的关系为电容器开始充电时(即电压从零开始增大),电容器的极板上没有电荷,此时存储电容容易,一个很小的电压便能产生很大的电流,此状态充电电流最大,后来极板上电荷积多了,同性电荷相互排斥,并随着电容器所带电荷的增加,要想电容器充电就受到了越来越大的阻力,电业必须继续升高,才能继续存储一些电荷进去,因此电流逐渐减小,到电压升到最大值时,极板上电荷已储满,此时电流减小到零。
即i c不是与u c成正比变化的,而是与u c 的变化率成正比变化的。
u c与i c变化的关系如下左图所示,由图知,u c与i c的相位差为9 ,且电流i c超前u c 90°,用相量图表示如下右图所示。
#交流电纯电容电路中的电功率(瞬时、有功、无功)在交流电路中纯电容电路的功率主要有三种状态,分别是瞬时功率、有功功率、无功功率。
纯电容电路中的功率瞬时功率瞬时功率等于电压u c与电路i c的乘积(也就是任何时候的电容两端的电压乘以流通的电流,电功率计算公式:U·I=P),其变化规律如下图所示:有功功率^从右图中可知,瞬时功率在一个周期内交替变化两次,两次为正,两次为负。
则表明瞬时功率在一个周期内的平均功率值为零。
它表明:在纯电容电路中,只有电容与电源进行能量交换,而无能量消耗,所以有功功率为零。
它和电感元件相似是个储能元件。
无功功率纯电容电路中瞬时功率的最大值叫做无功功率,它表示电容器与电源之间能量交换的规模,以Qc表示。
上述公式中:Qc:表示电容器的无功功率Var或Kvar(无功功率的单位千伏安)Uc:表示电容器两极间电压的有效值(V)Ic:表示纯电容电路中电流有效值(A)Xc:表示电容器的容抗(Ω)电容功率计算题题目:在纯电容电路中,已知电容器的电容C=500/πuF(微法),交流电频率f=50Hz,交流电压Uc=220V,求:Xc、Ic、Qc。
思路解析:这个题目给出的电容是微法,而容抗公式里面用的是法(F),所有先统一电容单位,C=法,然后通过容抗公式可以计算出此电容容抗为20Ω,题中Ic是大写,也就是有效值,根据公式Ic=Uc/Xc可计算出Ic=11A,然后通过功率计算工时Qc=UcIc即可计算出无功功率2420(Var)。