第三章 有界线性算子-黎永锦
- 格式:doc
- 大小:1.48 MB
- 文档页数:20
南昌大学泛函分析下册搜索目录第六章(3-63)§11.1距离空间的定义及例距离的定义,以及满足的三个条件P3距离空间的定义,以及满足的三个条件P4例1 n维欧式空间R n,元素为n维实向量(),按照距离(1)(1′)是一个距离空间P4-5,由例1得在一个集合中定义距离的方式不是唯一的柯西不等式P5C n,元素为n维复向量(),按照距离(1)是一个距离空间P6例2 空间C[a,b],元素为所有实(或复)连续函数,按照距离(3)是一个距离空间P6-7例3 L p(F)(1≤p<无穷,且为可测集),元素为p幂可积函数,按照(4)是一个距离空间P7例4 空间L无穷(F),元素为本性有界的可测函数,按照距离(5)是一个距离空间P7-8例5 空间l p(1≤p<无穷),元素为实(或复)数列,按照(9)是一个距离空间P8-10例6 空间l无穷,元素为一切有界的实(或复)数列,按照(10)是一个距离空间P111.2距离空间中的收敛及其性质定义1.2:点列{x n}收敛于x0,称x0为{x n}的极限P11定理1.1 设{x n}是距离空间X中的收敛点列,则下列性质成立:①{x n}的极限唯一;②对任意的y0∈X,数列{ρ(x n,y0)}有界。
P11定理1.2设{x n}是距离空间X中的收敛点列,且收敛,则{x n}的任一子列{x nk}也收敛,且收敛于同一极限。
反之,若{x n}的任一子列收敛,则{x n}本身也收敛P12 R n收敛的充分必要条件是P12C[a,b]收敛的充分必要条件是P12-13对于任何一个非空集合,我们都可以定义距离;定义距离的方式不唯一;如果一个非空集合中定义了两个或两个以上的距离,那么由它们本身导出的收敛可以等价也可以不等价。
当不等价时,便得到本质上不同的两个或两个以上的距离空间。
P14§22.1几种特殊的点集定义2.1 开球、闭球、球形领域、领域的概念P15定义2.2 内点、内部、开集(空集规定为开集)的概念。
有界线性算子逐点收敛的极限未必有界1杜升华2我们知道,定义在一个Banach 空间上的有界线性算子序列逐点收敛的极限一定是有界线性算子,这是一致有界性原理(Banach-Steinhaus 定理)的简单推论。
但是,这对不完备的赋范线性空间来说一般是不对的。
下面给出一个反例:令,首先验证X 是线性空间。
任取,11{(,,,)|01..()as n n n X x x x l s t x O n εε==∈∃<<=→∞……}1(,,)n x x x =……1(,,,)n y y y =∈……X ,设1()n n x O ε=,2()nn y O ε=(),n →∞1201εε<≤<,任取,αβ∈R ,则2()nn n x y O αβε+=(),从而n →∞x y X αβ+∈。
采用的诱导范数使X 成为赋范线性空间。
1l 3定义为,其中:n T X X →12()(,2,,,0,,0,)n n T x x x nx =………1(,,)n x x x =……。
易见且(,)n T B X X ∈n T n =。
任取1(,,)n x x x X =∈……,设当时n N ≥||n n x C ε≤。
定义,则12()(,2,,,)n T x x x nx =……()),n n n nx nO O n ε==→∞,故。
由此定义了一个线性算子。
当时,()T x X ∈:T X X →n N ≥11()()||0,k n kk n k n T x T x kxCk n ε∞∞=+=+−=≤→→∑∑∞,即在范数意义下li 。
1l m ()()n n T x T x →∞=但T 并不是有界线性算子。
事实上,设(0,,0,1,0,)k e =……为第k 分量为1、其余分量为0的向量,则,k e X ∈()k kT e k e =。
故(,)T B X X ∉。
有界线性算子理论中(同时也是线性泛函分析中)另两个最重要的定理是闭图像定理和有界逆定理。
第一节 有界线性算子的谱一、算子代数定义:()L X 是一复Banach 空间,并且为一具有线性运算与乘法运算的代数系统,我们称其为算子代数。
性质:设,,(),R S T L X α∈∈C ,则有 1、结合律:()()RS T R ST =,(,)m nm n T T T m n +=∈N ;2、()()()ST S T S T ααα==;3、(),()R S T RS RT R S T RT ST +=++=+;4、单位算子I 满足:IT TI T ==;5、:T X X →为同构⇔存在,()A B L X ∈,使得AT I TB ==;必定A B =,称它为T 的逆,记作1T -,并称T 为可逆算子。
以()GL X 记()L X 中的可逆算子的全体。
6、若,()S T GL X ∈,则()ST GL X ∈,且11111(),()()n n ST T S T T -----==。
当()T GL X ∈时约定10()(0),nn T T n T I --=>=,因而对任何,k k Z T ∈有意义。
注:1、算子乘法不满足交换律; 2、,(1)nn ST S T TT n ≤≤≥;3、若在()L X 中,n n S S T T →→,则必有n n S T ST →。
定义:设T 属于某算子代数,称010()(3.1.1)n n n n n f T T I T T αααα∞===++++∑、(其中系数(0)n n α∈≥C 为算子幂级数。
性质:设通常幂级数0()nnn f λαλ∞==∑有收敛半径R ,则当(),T L X T R ∈<时级数(3.1.1)绝对收敛:nn n n T T αα≤<∞∑∑。
引理3.1.1 设()T L X ∈,则1()n n I T T ∞-=-=∑只要其右端级数收敛。
特别,当1T <时上式必成立。
推论:若,(),T S L X T ∈可逆,则1110()()n n T S T ST ∞---=+=-∑,只要其右端级数收敛;特别,当S 适当小时必成立。
巴拿赫空间上的有界线性算子(一):巴拿赫空间上的有界线性算子前面两章的内容可以看作是学习泛函分析的准备工作,让我们熟悉了泛函分析研究的主要对象之一:无限维空间。
从本章开始,我们将研究算子理论,而在泛函分析基础中,我们主要研究有界线性泛函,当然我们也会对无界线性泛函做简单的介绍,那么现在就让我们开始新的旅程吧!设及都是实(或复)的线性空间, 是由的某个子空间到线性空间中的映射,如果对任意的 , 有:我们称这样的映射为线性映射或线性算子.给出一些我们常用的记号:映射的定义域常用表示;值域通常用表示.当映射的值域在实数域或者复数域时,我们习惯称其为线性泛函,常用表示.如果是连续(按照空间的范数收敛)则称是连续线性算子;若将任何有界集映射为有界集我们称其为有界线性算子.在本小节中我们主要探索连续和有界的关系!首先,我们做一点说明,我们主要还是在无限维空间中研究.这是为什么呢?因为在有限维空间中:线性连续有界这样的映射我们实在没有兴趣研究(真的没有兴趣吗?哈哈!)比如:在中定义积分算子:这显然是一个线性泛函;并且还是连续有界的.现在我们对有界、连续、线性这几个关系进行探索!设都是实赋范线性空间, 是由的子空间到中的连续可加算子.则满足齐次性,因此是连续线性算子.证明:因为对任意的都有:又因为是连续的,因此我们由柯西引理知道是齐次的,即:推论:设都是复赋范线性空间, 是由的子空间到中的连续可加算子,且 , 则满足齐次性,因此是连续线性算子.下边一个定理是我们对有界映射常用的一种说法:设都是赋范线性空间, 是由的子空间到中的线性算子. 则有界的充分必要条件是存在 , 使得对一切 , 有 .证明:充分性:显然.必要性:考虑单位球面(再一次体现了单位球面的重要性),,那么对任意的都有:先考虑任意的,那么,所以:因此:命题得证.有了这个等价刻画之后,我们就可以证明在赋范线性空间中连续和有界是一回事:设都是赋范线性空间, 是由的子空间到中的线性算子. 则下列性质等价:(i) 连续;(ii) 在原点处连续;(iii) 有界.证明:显然.注意到线性性并叙述连续定义:对任意的(不妨取为1),存在,使得对任意的,都有:因此对任意的,都有:因此:所以:所以有界.:设且,那么:因此在处连续.故得证.线性算子空间从这里开始,我们应空间表示Banach空间.不做说明时,所说的算子都定义在整个空间上.设都是空间,我们考虑所有从的有界线性泛函,不难发现,如果是线性算子,那么也是线性算子,也是线性算子,这说明线性算子在逐点定义的加法和自然数乘下可以形成数域上的线性空间.我们将这个空间记为:,当时,我们简记为:他已经是一个线性空间了,我们要在其上赋予范数使其具有拓扑结构,可是应该怎么赋予范数呢?这是一个好问题!一方面可以根据有限维空间定义范数的延申,一方面是根据书上的,因为是有界线性泛函,所以定义:显然它可以等价定义为:有限维泛函空间中:如中也是如此定义的.(学过数值的可能会熟悉些...)因为是有界泛函,所以:因此这个定义是合理的,如果是无界泛函那么上确界可能不存在,因此定义就不合理了。
第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
下有界线性算子与其伴随算子的关系作者:李琳来源:《文存阅刊》2018年第06期摘要:本文利用Riesz表示定理给出了无界线性算子是下有界的充要条件。
在数学物理中,很多实际问题都转化成无穷维Hamilton系统,如流体力学、弹性力学、电磁学以及量子力学等数学物理问题. 进而应用变分法使无穷维Hamilton系统导出无穷维Hamilton算子[1−3].对于无穷维Hamilton算子的研究,国内外很多学者做了大量工作,其中有一种方法是通过其伴随算子来求解无穷维Hamilton系统方程[4],因此伴随算子的研究非常重要. 在本文,我们给出Banach空间及Hilbert空间无界线性算子的伴随算子的概念,应用Riesz表示定理证明了下有界线性算子和伴随算子之间的关系。
关键词:下有界;伴随算子定义 1 是Banach空间,是稠定线性算子,令,其中,称是的伴随算子.定义 2 是Hilbert空间,T 是中稠定线性算子,令,其中,称是 T 的伴随算子.引理 1 是Banach空间(或Hilbert空间),是中的稠定线性算子,若不是下方有界,则存在,使得, .证明:由于不是下方有界,因此存在,且,使得 .令则, .引理2 (Riesz表示定理)设是Hilbert空间,是上定义的有界线性泛函,则存在唯一的,使得,并且 . 设,则是定义在全空间上的双射,且共轭线性同构,即,其中 .证明:证明略,见Weidmann《 Hilbert空间的线性算子》P61 Th4.8.定理 3 是Banach空间,是稠定线性算子,,若在上有界,则在上存在唯一的有界泛函 .证明:,由于稠定,因此,使得因为在上有界,所以,因此是ca uchy列,记 .令,则是上的线性泛函,,因此有界,且 .,有,,所以 .下面证明是唯一的,设是上的有界线性泛函,且,则,,使,且,因此,即是唯一的,结论证毕.定理 4 是Hilbert空间,是 X 中的稠定线性算子,是的伴随算子,则 R(T ∗)当且仅当下方有界.证明:必要性:假设不是下方有界,由引理1知,使得, .,则,因为,所以,,使得.由一致有界原理知有界,这与矛盾,所以下方有界.充分性:,则有引理2知存在唯一,使得 .当时,记,则, .由于,有界,所以是上的有界线性泛函,因此由Hahn-Banach定理知可延拓到上,且 .由引理3知,,使,从而当时,,因此,,所以,即,结论证毕.参考文献:[1]阿拉坦仓,张鸿庆:一类偏微分方程的无穷维Hamilton正则表示. 力学学报,31(3),347–357(1999)[2]阿拉坦仓,黄俊杰:无穷维Hamilton算子的普及相关问题研究.数学进展,38(2),129–146(2008)[3]吴国林,阿拉坦仓:一类无穷维Hamilton算子的普.内蒙古大学学报:自然科学版,389(3),1247–251 (2007)[4]吴德玉,阿拉坦仓:无穷维Hamilton算子特征函数系的Cauchy主值意义下的完备性. 中国科学A辑:数学,38(8),904-912 (2008)课题项目:2017年河套学院科学研究项目自然科学一般类:无穷维Hamilton算子的辛自伴(编号:HYZY201702)。
第一节有界线性算子的谱一.算子代数定义:厶(X)是一复Banach空间,并且为一具有线性运算与乘法运算的代数系统,我们称英为算子代数。
性质:设R,S,T“(X),xC,则有1、结合律:(RS)T = R(ST), T m+B=r n r(m,neN);2、a(ST) = (aS)T = S(aT);3、R(S + T) = RS + R「(R + S)T = RT + ST ;4、单位算子/满足:IT = TI = T ;5、7\X T X为同构O存在A.B^L(X),使得AT = [ = TB :必左4 = B,称它为T的逆,记作T~\并称丁为可逆算子。
以GZXX)记厶(X)中的可逆算子的全体。
6、若S、TwGL(X),贝iJSreGL(X),且(ST)"1=T^S'\(T n y[ =(T-I)/\当Tw GL(X)时约宦厂〃=(厂丫⑺> 0),厂=I,因而对任何"乙厂有意义。
注:1、算子乘法不满足交换律;2、阿|邙||||71,||鬥|井『(心);3、若在厶(X)中S Q S、T Q T,则必有S n T n ->ST o定义:设丁属于某算子代数,称/(7')=工%7'”=%/ + <7' + ・・・+ ©7'”+・・・n-0(其中系数e C(// > 0)为算子幕级数。
性质:设通常幕级数有收敛半径R,则当TeMX),||T||</?时级数ZF-0工0Z1卜工闯P『vs引理3丄1设TeL(X),则X (/_丁尸=工厂『“■0只要貝右端级数收敛。
特別,当|卩||<1时上式必成立。
推论:若T,SwL(X),T可逆,则00(T + S)-=工厂l_S 厂 g/r-()只要英右端级数收敛:特别,当||s||适当小时必成立。
二、谱与谱半径定义3.1.2设Tw厶(X ),1、若不可逆,即AI-TeGL(X),则称2为丁的谱值。
第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L .(欧拉)(1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i i i z z 时引入记号||||z 来表示211)(∑∞=i ii z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义K R C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件:(1) 0||||≥x 且0||||=x 当且仅当0=x ;(2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;(3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例s ,则明显地,s 为线性空间,对任意的s y x ∈,, 定义则但取)0,,0,1(0 =x ,210=λ,则 而因此所以,)0,(0x d 不是s 上的范数.问题X d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理X ,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1))0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例}||,|){(11∞<∈=∑∞=i i i i x K x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例∞<≤p 1,}||,|){(1∞<∈=∑∞=i p i i i p x K x x l 在范数下是赋范线性空间.例}||sup ,|){(∞<∈=∞i i i x K x x l ||sup ||||i x x =例}0lim ,|){(0=∈=∞→i i i i x K x x c ||sup ||||i x x = 例2.1.7}],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义X X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为 在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球.为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例Euclid 2R ,对于),(21x x x =可以定义几种不同的范数:则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:思考题||)||,(⋅X ,问开球),(0r x U 的闭包是否一定是闭),(0r x B ?思考题||)||,(⋅X ,问闭球),(0r x B 内部是否一定是开球),(0r x U ?在赋范线性空间中,加法与范数都是连续的.定理||)||,(⋅X 00,y y x x n n →→,则00y x y x n n +→+.证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →.证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义||)||,(⋅X ,若),(0||||,}{∞→→-⊂n m x x X x n m n 时,必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n ),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义||)||,(⋅X ,若序列}{}{21n n x x x S +++= 收敛于某个X x ∈时,则称级数∑∞=1n n x收敛,记为∑∞==1n n x x .定义||)||,(⋅X ,若数列||}||||||||{||21n x x x +++ 收敛时, 则称级数∑∞=1n n x 绝对收敛. 在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理||)||,(⋅X ,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n n x绝对收敛,则由∞<∑∞=1||||n n x 可知,对于n n x x x S +++= 21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即 x xn n =∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对k k 21=ε,有 <<<<<+121k k n n n n , 使得因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义||)||,(⋅X ,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理||)||,(⋅X Banach ,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义X ,p 为X 上的一个实值函数,且满足:(1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,;(3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例∞l ,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2 n x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义X ,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性);(3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0,即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M ,则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x ,这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理||)||,(⋅X ,M 为X 的闭线性子空间,在M X /上定义范数}|||inf{||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有,)(||||~x p x =.当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性.定理X Banach ,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义X ,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理1||||⋅2||||⋅X ,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤.若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n n n x x y =,则 故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论1||||⋅2||||⋅X ,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有推论1||||⋅2||||⋅X ,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间. 思考题1||||⋅2||||⋅X ,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义X n ,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21 为X 的一组线性无关组,则称n e e e ,,,21 为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn ii e x 1α 定理||)||,(⋅X n n e e e ,,,21 X Hamel ,则存在常数1C 及02>C 使得对任意∑==nn ii e x 1α都成立. 证明 对于任意n i K ∈=)(αα,定义函数则对任意n i K ∈=)(αα,n i K ∈=)(ββ,有 这里2121)||||(∑==n n i eM ,因此f 是n K 到R 的连续函数.由于n K 的单位球面}1)||(|){(2112=∈=∑=n i i n i K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得因此对任n i K ∈=)(αα,有故即下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i i e f αα,故由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理X ,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C ,02>C 使得定理Banach证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21 有i n i m im e x ∑==1)(α,由可知}{)(m iα亦为Cauchy 列,故存在R i ∈α,使得i m i αα→)(,因而有)(i αα=,使得 令i n i i e x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在n R 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理||)||,(⋅X ,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21 为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i n i i e x ∑==1α 定义n K 到X 的算子T :则存在0,021>>C C ,使得从而T 是nK 到X 的连续算子,且是一一对应的.由||)(||)||(21121ααT C n i i ≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当)(1M T-为n K 的紧集,从而M 是X 的紧集当且仅当M 是有界闭集. 问题||)||,(⋅X ,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理Riesz M ||)||,(⋅X ,则对任意 10<<ε,存在1,=∈εεx X x ,使得对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得 令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有 由M x ∈0,M x ∈和M 是线性子空间,可知因此故由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理||)||,(⋅X X }1|||||{≤=x x B X证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x span M ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论X X对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件,Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集,且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念,Schauder 基是-Fun in stetiger Theorie Zur Schauder J [. .]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义Banach ||)||,(⋅X }{n x X Schauder ,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得容易看到,有限维赋范线性空间一定具有Schauder 基.例1l ),0,1,0,,0( =n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基.具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义||)||,(⋅X ,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例Q ,且R Q =,因此R 是可分的.类似地,n R 也是可分的赋范空间. 例p l p ,1+∞<≤,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21 ε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理||)||,(⋅X Schauder ,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题Schauder例∞l Schauder由于∞l 不可分,因而一定没有Schauder 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题Schauder上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973),309-317.]2.4线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间.Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义||)||,(⋅X ,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有 则称f 为X 的线性泛函.例∞l ,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理f ||)||,(⋅X ,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则由f 在0x 点的连续性,因此所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题X ,X 上任意线性泛函都连续?例n R事实上令)0,0,1,0,0( =i e ,则任意nR x ∈,有∑==ni ii ex x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义X X K ,则称f 为有界线性泛函,否则f 为无界线性泛函.定理f ||)||,(⋅X ,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有 故对任意X x ∈,有 所以例)(|){(i i x x c =,范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此 所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理X ,则X 上的线性泛函是连续的当且仅当f 是有界的.证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得 令0,||||0==y x n x y n nn ,则01||||0→=-n y y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理X ,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使 令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义f X ,则称 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例f 1l ,若取}{i e 为1l 上的Schauder 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i i e f x x f ,因而从而|)(|sup ||||i e f f ≤.取1)0,0,1,0,0(l e i ∈= , 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间nR 上的矩量问题.Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果.Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理M X ,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理M X ,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理M X ,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得 (1)**=M X f F ||||||||;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数,*M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =,对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由可知**=M X f F ||||||||,且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题Banach Hahn -,什么条件下保范延拓是唯一的?例},|),{(2121R x x x x X ∈=,定义范数||||||),(||||||2121x x x x x +==.令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函这里X x x x ∈=),(21 在M 上,都有对任意的M x y ∈=)0,(1成立.在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理||)||,(⋅X ,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g : 则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x . 对0'tx x x +=,不妨假设0≠t .由 可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论X ,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f . 该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函. 由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论X ,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题X ,试证明对任意X x ∈0,有 证明 对任意*∈X f ,1||||=f ,有 因此另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =, 故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题||)||,(⋅X ,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得 由Banach Hahn -定理的推论,可知存在*∈X f ,1||||=f ,使得 即这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x Xf f ,又由可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义X ,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有 严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例Banach 0c000),0,0,1,0(),,0,1,1(c y x ∈== ,则1||||||||00==y x ,且对),0,0,1,21(200 =+y x ,明显地有1||2||00=+y x . 类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例1||||,1||||,,2==∈y x l y x y x ≠,则 从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理X ,则对任意非零线性泛函*∈X f ,f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得 由于 因此 从而 明显地,12||||||||||2||0000=+≤+y x y x .因此1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理*X ,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓.证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则由于 因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题X M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义X X x X M ∈⊂,,若存在M y ∈0,使得则称0y 为M 中对x 的最佳逼近元.定理M ,则对任意X x ∈,存在M y ∈0,使得证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得 因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈. 问题例2R ,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有故对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf{||),(00=∈-=M x x x M x d .但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理X ,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得 则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性矛盾,所以由反证法原理可知x 在M 中存在唯一的最佳逼近元.最后,值得注意的是,严格凸性不是拓扑性质,它与范数的选取有关.例2R ,如果取范数212221)|||(|||||x x x +=,则||)||,(2⋅R 是严格凸的,但对于另一个范数||||||||211x x x +=,)||||,(12⋅R 不是严格凸的,并且范数1||||⋅和||||⋅等价. Istratescu V .还将严格凸性推广到复严格凸性,复严格凸性在取值于复Banach 空间的解析函数理论中有着重要应用convex strictly complex On Istratescu I Istratescu V ,.,.[习题二2.1 在n R ,对任意n n R x x x ∈=},,{1 ,定义上n R 的几个实值函数,使得它们都是n R 范数.2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=.2.3在]1,0[C 中,定义p p p dt t x x /110)|)(|(||||⎰=)1(∞<≤p ,试证明||||⋅是]1,0[C 的范数.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.5试证明0c 是∞l 的闭线性子空间.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.7设X 是赋范线性空间,若y y x x n n →→,,试证明y x y x n n +→+.2.8 试证明n e 为)1(∞<<p l p 的Schauder 基.2.9 设)1,,1,1(0⋅⋅⋅=e ,试证明},,,,,{210⋅⋅⋅⋅⋅n e e e e 为c 的Schauder 基.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.11 设1||||⋅和2||||⋅为线性空间X 上的两个等价范数,试证明)||||,(1⋅X 可分当且仅当 )||||,(2⋅X 可分.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.2.13设f 和g 为线性空间X 上的两个非零的线性泛函,试证明它们有相同的零空间当且仅当存在k ,使得kg f =.2.14设X 是有限维Banach 空间,ni i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.15设f 为赋范线性空间X 上的非零的线性泛函,试证明}1)(|{=∈=x f X x M 是X 的非空闭凸集.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立. 2.17设X 是有限维空间,ni i x 1}{=为X 的Schauder 基,对任意∑==∈ni i i x x X x 1,α, 定义泛函i i x f α=)(,试证明*∈X f i .2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.19试在1l 构造一个新范数1||||⋅,使得)||||,(11⋅l 是严格凸空间.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间.2.21设*X 是严格凸的,试证明对于任意1||||,=∈x X x ,有且仅有唯一的1||||,=∈*x x f X f ,使得1)(=x f x .2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.23设X F =,试证明对任意x X x ,∈都可以写成一个收敛级数∑∞=1i i x 的和,且每一项i x 都属于F .2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x x f x x f n n →. 2.25 试证明赋范线性空间X 是完备的当且仅当度量空间),(d S 是完备的,这里单位球面}1|||||{=∈=x X x S ,度量||||),(y x y x d -=.2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.2.27在]1,0[C 中,试证明]1,0[}1|)(||)({C t x t x A ⊂≤=是]1,0[C 的有界闭集,但不是等度连续的.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.巴拿赫Banach S .1892年3月30日生于波兰的一个叫Ostrowsko的小村庄,出身贫寒.Banach S .1916年结识SteinhausH .后,Steinhaus H .告诉Banach S .一个研究很久尚未解决的问题.几天后,Banach S .找到了答案,Banach S .就和Steinhaus H .一起写了论文,联名发表在Kraków 科学院会报上.Stefan Banach (1892-1945)1920年, Lomnicki 教授破格将Banach S .安排到Lvov 技术学院当他的助教.同年,Banach 提交了他的博士论文“关于抽象集合上的运算及其在积分方程上的应用”(Sur les opérations dans les ensembles abstraits etleur applicationaux équtions int égrales),并取得博士学位.该论文发表在1923年的《数学基础》)(ae Mathematic Fundamenta 第3卷上,大家都将它看为泛函分析学科形成的标志之一.1922年,Banach S .通过讲师资格考核,1924年任该大学教授.1929年,Banach S .和Steinhaus H .创办了泛函分析的刊物a Mathematic Studia .1932 年,Banach S .出版了《线性算子理论》Théorie des óperations linéaires,这本书汇集了Banach S .的研究成果,对推动泛函分析的发展起了重要作用.1936年,在Oslo 召开的国际数学家大会邀请Banach S .在全体大会上作报告.在波兰国内,Banach 被授予多种科学奖金,1939年被选任波兰数学Banach S .会主席.Banach S .的主要工作是引进线性赋范空间概念,证明了很多赋范空间基本定理,很多重要的定理现在都以他的名字命名,他证明的三个基本定理(Banach Hahn -线性泛函延拓定理,Steinhaus Banach -定理和闭图像定理)概括了许多经典的分析结果,在理论上和应用上。
第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。