边际、弹性分析
- 格式:pdf
- 大小:140.84 KB
- 文档页数:6
管理经济学名词解释管理经济学是一门关于经济学和管理学交叉领域的学科,涉及了许多与组织和企业管理相关的概念和术语。
在本文中,我们将对一些常见的管理经济学名词进行解释和阐述。
以下是对这些名词的详细解释:1.效用(Utility)效用是指个人或组织对特定产品、服务或决策结果所感受到的满意程度或期望值。
在经济学中,效用被认为是人们行为背后的动力。
管理经济学中,效用的概念常用于衡量和评估企业或组织内部决策的合理性。
2.边际分析(Marginal Analysis)边际分析是指在决策过程中考虑每个额外的单位或变动的效果。
它基于边际成本和边际收益的原理,通过比较额外一单位的成本和收益来做出最优决策。
在管理经济学中,边际分析可以帮助经理人确定最佳投入与产出的平衡。
3.供给与需求(Supply and Demand)供给与需求是经济学中最基本的概念之一。
供给指的是市场上各个卖方愿意以一定价格和数量提供的商品或服务。
需求指的是市场上各个买方愿意以一定价格和数量购买的商品或服务。
供给与需求的平衡决定了市场价格和交易量。
4.弹性(Elasticity)弹性是指单位价格变化对数量变化的敏感程度。
市场上的产品或服务的需求弹性和供给弹性可以帮助企业了解消费者对价格敏感程度,从而调整定价策略和市场策略,以实现利润最大化。
5.固定成本与变动成本(Fixed Costs and Variable Costs)固定成本是指在生产或经营过程中无论产量多少都不会改变的成本,如租金、设备折旧等。
变动成本是与产量或经营规模成正比例变动的成本,如原材料成本、劳动力成本等。
企业通过合理控制固定成本和变动成本的比例来实现成本效益。
6.机会成本(Opportunity Cost)机会成本指的是由于某个选择而放弃的最高价值的替代选择的成本。
在资源有限的情况下,企业或个人做出一种选择必然意味着无法选择其他可行的方案,机会成本帮助我们权衡各种选择并做出经济最优的决策。
第七节 导数在经济学中的应用本节讨论导数概念在经济学中的两个应用——边际分析和弹性分析.内容分布图示★ 引言 ★ 边际函数★ 边际成本 ★ 例1★ 边际收入与边际利润★ 例2 ★ 例3 ★ 例4★ 函数的弹性★ 需求弹性 ★ 例5★ 用需求弹性分析总收益的变化 ★ 例6★ 例7 ★ 例8 ★ 例9★ 内容小结 ★ 课堂练习★ 习题3-7 ★ 返回内容要点:一、边际分析在经济学中,习惯上用平均和边际这两个概念来描述一个经济变量y 对于另一个经济变量x 的变化. 平均概念表示在x 在某一范围内取值y 的变化. 边际概念表示当x 的改变量x ∆趋于0时,y 的相应改变量y ∆与x ∆的比值的变化,即当x 在某一给定值附近有微小变化时,y 的瞬时变化.边际函数: 根据导数的定义, 导数)(0x f '表示)(x f 在点0x x =处的变化率, 在经济学中, 称其为)(x f 在点0x x =处的边际函数值.边际成本:成本函数)(x C C =(x 是产量)的导数)(x C '称为边际成本函数.边际收入与边际利润:在估计产品销售量x 时, 给产品所定的价格)(x P 称为价格函数, 可以期望)(x P 应是x 的递减函数. 于是,收入函数 )()(x xP x R =利润函数 )()()(x C x R x L -=()(x C 是成本函数)收入函数的导数)(x R '称为边际收入函数; 利润函数的导数)(x L '称为边际利润函数.二、 函数弹性函数弹性的概念:在边际分析中所研究的是函数的绝对改变量与绝对变化率, 经济学中常需研究一个变量对另一个变量的相对变化情况, 为此引入下面定义.定义1 设函数)(x f y =可导, 函数的相对改变量)()()(x f x f x x f y y -∆+=∆ 与自变量的相对改变量x x ∆之比xx y y //∆∆, 称为函数)(x f 从x 到x x ∆+两点间的弹性(或相对变化率). 而极限 x x y y x //lim0∆∆→∆ 称为函数)(x f 在点x 的弹性(或相对变化率), 记为.lim //lim 00yx y y x x y x x y y Ex Ey x x '=⋅∆∆=∆∆=→∆→∆ 注: 函数)(x f 在点x 的弹性ExEy 反映随x 的变化)(x f 变化幅度的大小,即)(x f 对x 变化反应的强烈程度或灵敏度. 数值上, )(x f ExE 表示)(x f 在点x 处,当x 产生1%的改变时, 函数)(x f 近似地改变)(x f Ex E %, 在应用问题中解释弹性的具体意义时, 通常略去“近似”二字.需求弹性:设需求函数)(P f Q =, 这里P 表示产品的价格. 于是, 可具体定义该产品在价格为P 时的需求弹性如下:)()(lim //lim)(00P f P f P Q P P Q P P Q Q P P P '⋅=⋅∆∆=∆∆==→∆→∆ηη 当P ∆很小时, 有 PQ P f P P f P f P ∆∆⋅≈'⋅=)()()(η, 故需求弹性η近似地表示在价格为P 时, 价格变动1%, 需求量将变化%η, 通常也略去“近似”二字.注: 一般地, 需求函数是单调减少函数, 需求量随价格的提高而减少(当0>∆P 时, 0<∆Q ), 故需求弹性一般是负值, 它反映产品需求量对价格变动反应的强烈程度(灵敏度). 用需求弹性分析总收益的变化:总收益R 是商品价格P 与销售量Q 的乘积, 即),(P f P Q P R ⋅=⋅=由 ⎪⎪⎭⎫ ⎝⎛'+='+=')()(1)()()(P f P P f P f P f P P f R ),1)((η+=P f知:(1) 若1||<η, 需求变动的幅度小于价格变动的幅度.,0>'R R 递增. 即价格上涨, 总收益增加; 价格下跌, 总收益减少.(2) 若1||>η, 需求变动的幅度大于价格变动的幅度.0<'R , R 递减. 即价格上涨, 总收益减少; 价格下跌, 总收益增加.(3) 若1||=η, 需求变动的幅度等于价格变动的幅度.0='R , R 取得最大值.综上所述, 总收益的变化受需求弹性的制约, 随商品需求弹性的变化而变化,例题选讲:边际分析例1(讲义例1)设每月产量为x 吨时, 总成本函数为4900841)(2++=x x x C (元), 求最低平均成本和相应产量的边际成本.例2(讲义例2)设某种产品的需求函数为P x 1001000-=, 求当需求量300=x 时的总收入, 平均收入和边际收入.例3(讲义例3)设某产品的需求函数为x P 1.080-=(P 是价格, x 是需求量), 成本函数为x C 205000+=(元).(1) 试求边际利润函数)(x L ', 并分别求150=x 和400=x 时的边际利润.(2) 求需求量x 为多少时, 其利润最大?例4(讲义例4)设某厂在一个计算期内产品的产量x 与其成本C 的关系为32000001.0003.061000)(x x x x C C +-+==(元),根据市场调研得知, 每单位该种产品的价格为6元, 且全部能够销售出, 试求使利润最大的产量.函数弹性例5(讲义例5)设某种商品的需求量x 与价格P 的关系为.411600)(PP Q ⎪⎭⎫ ⎝⎛= (1) 求需求弹性)(P η;(2) 当商品的价格10=P (元)时, 再增加1%, 求该商品需求量变化情况.例6(讲义例6)某商品的需求函数为275P Q -=(Q 为需求量, P 为价格).(1) 求4=P 时的边际需求, 并说明其经济意义.(2) 求4=P 时的需求弹性, 并说明其经济意义.(3) 当4=P 时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少?(4) 当6=P 时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少?例7(讲义例7)糖果厂每周的销售量为Q 千袋, 每袋价格为2元, 总成本函数为10001300100)(2++=Q Q Q C (元), 试求:(1) 不盈不亏时的销售量; (2)可取得利润的销售量;(3) 取得最大利润的销售量和最大利润;(4) 平均成本最小时的产量.例8(讲义例8)一玩具经售商以下列成本及收益函数销售某种产品:60000,001.02.7)(60000,0002.04.2)(22≤≤-=≤≤-=x x x x R x x x x C试问何时利润随产量增加(即增加产量可使利润增加)?例9 某企业的成本函数为50005.0+=x C ,其中C 的单位为元,而x 为上生产数量. 试求10000,1000=x 及100000时的单位平均成本, 当x 趋近于无穷大时单位平均成本的极限为何?课堂练习1.设某产品的成本函数和价格函数分别为,10050)(,100053800)(2x x P x x x C -=-+= 决定产品的生产量x , 以使利润达到最大.2.设商品需求函数为,2/12)(P P f Q -==(1) 求需求弹性函数;(2) 求6=P 时的需求弹性;(3) 在6=P 时, 若价格上涨1%, 总收益增加还是减少? 将变化百分之几?(4) P 为何值时, 总收益最大? 最大的总收益是多少?。
一、边际分析边际的概念.如果一个经济指标y 是另一个经济指标x 的函数)(x f y =,那么当自变量有改变量x ∆时,对应有函数的改变量y ∆.在经济学中,当自变量在x 处有一个单位改变量时,所对应的函数改变量为该函数所表示的经济指标在x 处的边际量.例如当生产量在x 单位水平时的边际成本,就是在已生产x 单位产品水平上,再多生产一个单位产品时总成本的改变量,或者可以说是再多生产一个单位产品所花费的成本.设x 的改变量为x ∆时,经济变量y 的改变量为y ∆=)()(x f x x f -∆+,则相应于x ∆,y 的平均变化率是xx f x x f x y ∆-∆+=∆∆)()( 由边际的概念,在上式中取1=∆x 或1-=∆x 就可得到边际量的表达式.但边际概念的定义和计算使我们想到能否用函数)(x f y =的导数作为y 的边际量呢?如果按纯粹的数学概念来讲,似乎行不通,因为导数定义要求自变量增量必须趋向于零,而实际问题中自变量x 的经济意义通常是按计件的产量或销量作为单位的,改变量为小数且趋于零不合乎实际.但我们可以这样考虑,对于现代企业来讲,其产销量的数额和一个单位产品相比是一个很大数目,1个单位常常是其中微不足道的量,可以认为改变一个单位的这种增量是趋近于零的.正是这个缘故,在经济理论研究中,总是用导数xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示经济变量y 的边际量,即认为)(x f '的经济意义是自变量在x 处有单位改变量时所引起函数y 的改变数量.1.边际成本在经济学中,边际成本定义为产量为x 时再增加一个单位产量时所增加的成本.成本函数的平均变化率为xx C x x C x C ∆-∆+=∆∆)()( 它表示产量由x 变到x +x ∆时,成本函数的平均改变量.当成本函数()C x 可导时,根据导数定义,成本函数在x 处变化率为xx C x x C x C x ∆-∆+='→∆)()(lim )(0 在经济上我们认为)(x C '就是边际成本.因此,边际成本)(x C '是成本函数)(x C 关于产量x 的一阶导数.,它近似等于产量为x 时再生产一个单位产品所需增加的成本,即)()1()()(x C x C x C x C -+=∆≈'在实际问题中企业为了生产要有厂房、机械、设备等固定资产,在短期成本函数中作为固定成本0C ,它是常数,而生产中使用劳力,原料、材料、水电等方面的投入随产量x 的变化而改变,生产的这部分成本是可变成本,以)(1x C 记,于是成本函数可表示为)()(10x C C x C +=此时边际成本为)()()()(110x C x C C x C '='+'=' 由此,边际成本与固定成本无关,它等于边际可变成本.在实际经济量化分析问题中,经常将产量为x 时的边际成本)(x C '和此时已花费的平均成本xx C )(做比较,由两者的意义知道,如果边际成本小于平均成本,则可以再增加产量以降低平均成本,反之如果边际成本大于平均成本,可以考虑削减产量以降低平均成本.由此可知,当边际成本等于平均成本时可使产品的平均成本最低.2.边际收入和边际利润在经济学中,边际收入定义为销量为x 时再多销售一个单位产品时所增加的收入.设收入函数)(x R R =是可导的,收入函数的变化率是xx R x x R x R x ∆-∆+='→∆)()(lim )(0 同边际成本道理一样,我们认为)(x R '就是边际收入.因此,边际收入)(x R '是收入函数)(x R 关于产量x 的一阶导数.,它近似等于销量为x 时再销售一个单位产品所增加(或减少)的收入.即)()1()()(x R x R x R x R -+=∆≈'设利润函数为)(x L L =,由于利润函数是收入函数与成本函数之差,即)()()(x C x R x L -=则边际利润是)()()(x C x R x L '-'='因此,边际利润)(x L '是利润函数)(x L 关于产量x 的一阶导数,它近似等于销量为x 时再销售一个单位产品所增加(或减少)的利润.在经济学中还经常用到边际效用,边际产量、边际劳动生产率等概念,它和边际成本、边际收入、边际利润的经济解释方法大同小异,在此不再阐述.下面用具体例子说明边际概念在实际问题中的意义和作用.例 1 设某企业的产品成本函数和收入函数分别为52003000)(2x x x C ++=和20350)(2x x x R +=,其中x 为产量,单位为件,)(x C 和)(x R 的单位为千元,求:(1)边际成本、边际收入、边际利润;(2)产量20=x 时的收入和利润,并求此时的边际收入和边际利润,解释其经济意义.解 由边际的定义有(1)边际成本 x x C 52200)(+=' 边际收入 10350)(x x R +=' 边际利润 x x C x R x L 103150)()()(-='-'=' (2)当产量为20件时,其收入和利润为702020)20(20350)20(2=+⨯=R (千元) 6070807020)20()20()20(-=-=-=C R L (千元)其边际收入与边际利润为3521020350)20(=+='R (千元/件)144208352)20()20()20(=-='-'='C R L (千元/件)上面计算说明,在生产20件产品的水平上,再把产品都销售的利润为负值,即发生了亏损,亏损值为60千元;而此时的边际收入较大,即生产一件产品收入为352千元,从而得利润144千元.这样以来,该企业的生产水平由20件变到21件时,就将由亏损60千元的局面转变到盈利8460144=-千元的局面,故应该再增加产量.二、弹性分析一个简单引例.设2x y =,当x 由10变到11时,y 由100变到121.显然,自变量和函数的绝对改变量分别是x ∆=1,y ∆=21,而它们的相对改变量xx ∆和y y ∆分别为 x x ∆=%10101= y y ∆=%2110021= 这表明,当自变量x 由10变到11的相对变动为10%时,函数y 的相对变动为21%,这时两个相对改变量的比为1.2%10%21==∆∆=x x y yE 解释E 的意义:x =10时,当x 改变1%时,y 平均改变2.1%,我们称E 为从x =10到x =11时函数2x y =的平均相对变化率,也称为平均意义下函数2x y =的弹性.这个大小度量了)(x f 对x 变化反应的强烈程度.特别是在经济学中,定量描述一个经济变量对另一个经济变量变化的反应程度对科学决策至关重要.如果极限00000000/)(/)]()([lim /)(/limx x x f x f x x f x x x f y x x ∆-∆+=∆∆→∆→∆ 存在,则称此极限值为函数)(x f y =在点x 0处的点弹性,记为x x Ex Ey =,=∆∆⋅=→∆=x y x f x Ex Ey x x x )(lim 0000)()(000x f x f x ' 称)()(x f x f x Ex Ey '=为函数)(x f y =在区间Ⅰ的点弹性函数,简称弹性函数.而称00000/)(/)]()([/)(/x x x f x f x x f x x x f y ∆-∆+=∆∆ 为函数)(x f y =在以x 0与x 0+x ∆为端点的区间上的弧弹性.弧弹性表达了函数)(x f 当自变量x 从x 0变到x 0+x ∆时函数的平均相对变化率,而点弹性正是函数)(x f 在点x 0处的相对变化率.例2 求指数函数)1,0(≠>=a a a y x 的弹性函数.解 因为a a y x ln ='所以a x ax a a y x y Ex Ey x x ln ln =⋅='=.1. 需求弹性函数的弹性表达了函数)(x f 在x 处的相对变化率,粗略来说,就是当自变量的值每改变百分之一所引起函数变化的百分数.需求弹性就是在需求分析中经常用来测定需求对价格反应程度的一个经济指标.设某商品的市场需求量Q 是价格p 的函数:)(p Q Q =,)(p Q 是可导函数,则称Q Qp p Q p Q p Ep EQ '='=)()( 为该商品的需求价格弹性,简称为需求弹性,记为p ε.可以这样解释p ε的经济意义;当商品的价格为p 时,价格改变1%时需求量变化的百分数.为什么不使用变化率而要使用这种相对变化率来表达价格改变对需求量的反应呢?由弹性定义看到,弹性与量纲无关,需求弹性与需求量和价格所用的计量单位无关.以对水果的需求为例,在我国将以m 公斤/元来度量,在美国将以n 公斤/美元来度量,这就无法比较两国需求对价格的反应.正因为弹性可不受计量单位的限制,所以在经济活动分析中广泛采用,除需求价格弹性,还有收入价格弹性,成本产量弹性等.由经济理论知道,一般商品的需求函数为价格的减函数,从而0)(<'p Q ,这说明需求价格弹性p ε一般是负的.由此,当商品的价格上涨(或下跌)1%时,需求量将下跌(或上涨)约%p ε,因此在经济学中,比较商品需求弹性的大小时,是指弹性的绝对值p ε,一般在经济分析中将需求弹性记为p p εε-=. 当1=p ε时,称为单位弹性,此时商品需求量变动的百分比与价格变动的百分比相等;当1>p ε时,称为高弹性,此时商品需求量变动的百分比高于价格变动的百分比,价格的变动对需求量的影响比较大;当1<p ε时,称为低弹性,此时商品需求量变动的百分比低于价格变动的百分比,价格的变动对需求量影响不大.在商品经济中,商品经营者关心的是提价(0>∆p )或降价(0<∆p )对总收入的影响,利用需求弹性的概念,可以对此进行分析.设收入函数为R ,则pQ R =,此时边际收入为Q p Q p R '+=')()1(Q Qp Q '+=)1(p Q ε+= (2) 当p ∆很小时,有p Q p p R R p ∆+=∆'≈∆)1()(ε p Q p ∆-=)1(ε (3)由此可知,当1>p ε(高弹性)时,商品降价时(0<∆p ),0>∆R ,即降价可使收入增加,商品提价时(0>∆p ),0>∆R ,即提价将使总收入减少. 当1<p ε(低弹性)时,降价使总收入减少,提价使总收入增加. 当1=p ε(单位弹性)时,0=∆R ,提价或降价对总收入无影响. 上述分析使我们看到,根据商品需求弹性的不同,应制定不同的价格政策,以使收入快速增长.例3 设某种产品的需求量Q 与价格p 的关系为p p Q )41(1600)(= (1)求需求弹性;(2)当产品的价格10=p 时再增加1%,求该产品需求量变化情况.解 (1)由需求弹性公式'⎥⎦⎤⎢⎣⎡⋅='=p pp p Q Q p )41(1600)41(1600ε p p 39.141ln -≈= 需求弹性为-1.39p ,说明产品价格p 增加1%时,需求量Q 将减少1.39p %.(2)当产品价格10=p 时,有9.131039.1-=⨯-=p ε这表示价格10=p 时,价格增加1%,产品需求量将减少13.9%;如果价格降低1%,产品的需求量将增加13.9%.这也表明此商品的需求弹性是高弹性的,适当降价会使销量大增.例4 已知某企业的产品需求弹性为2.1,如果该企业准备明年降价10%,问这种商品的销量预期会增加多少?总收益预期会增加多少?题中价格的改变量是相对量,所以所求的销量和总收益的改变也采用相对改变量.解 由需求函数弹性定义知,当p ∆较小时pQ Q p dp dQ Q p p ∆∆⋅≈⋅=ε 即p p Q Q p ∆≈∆ε故当1.2=p ε,1.0-=∆pp 时,有 %21)1.0(1.2=-⨯-≈∆QQ 因为R =PQ ,由(3)式有p Q p Q R R p ∆⋅-≈∆)1(εpp p ∆-=)1(ε 当1.2=p ε时,有%11)1.0()1.21(=-⨯-≈∆RR 可见,明年企业若降价10%,企业销量将增加21%,收入将增加11%.(注:素材和资料部分来自网络,供参考。
九个基本经济数学模型:1、边际分析模型:边际成本:设成本函数为:C=C(q) (q是产量)则边际成本:表示产量为q时生产1个单位产品所花费的成本。
边际收益:设需求函数为P=P(q) (q是产量,P是价格)则收益函数为:R=R(q)=q﹒p(q)边际收益为:表示销售量为q时销售1个单位产品所增加的收入。
边际利润:设利润函数L=L(q)=R (q)-C(q) 则边际利润ML=L’(q)= 边际利润ML=L’(q)表示销售量为q时销售点1个单位产品的所增加的利润。
2、弹性分析模型:需求价格弹性:设需求函数q=q(p),q是需求量,P是价格。
则需求价格弹性:当价格上升百分之一时,需求量减少百分之一;当价格下降百分之一时,需求量上升百分之一需求收入弹性:需求量是收入的(单增)函数,q=q(R),q是需求量,R是收入,则需求收入弹性当收入增加百分之一时,需求量增加百分之;当收入减少百分之一时,需求量减少百分之3、最大利润模型:设总利润L=L(q)=R(q)-C(q)L(q)取得最大利润的必要条件:L(q)取得最大利润的充分条件:4、最优批量模型:(其中:T总成本,Q为每批产量,S为产品的调整准备成本,A为全年产量)得5、线性回归方程:模型设变量x与y存在线性关系,y=ax+b,对n 项实验得n对数据(x1、y1), (x2、y2),………(xn、yn)。
可求出则y=ax+b6、线性规划数学模型:1 2 1式称为目标函数,2式称为约束条件x1、x2………, xn称为决策变量,满足2式的一组变量值称为线性规划问题的可行解,使1式达到最大(小)值的可行解称为最大解。
7、投入产出数学模型:投入产出表(略)产出分配平衡方程:(i=1,2,…...,n)投入构成平衡方程:(j=1,2,…...,n)是直接消耗系数设则投入产出数学模型完全消耗系数: 有:8、风险型决策数学模型:1期望值准则如果用A表示各行动方案的集合,N表示各自然状态的集合,P是各状态出现的概率向量,M 是益损值的矩阵,即这时,则决策实质就是求向量E(A)的最大元或最小元对应的行动方案。
边际分析与弹性分析边际分析和弹性分析是经济学中重要的概念和工具。
边际分析主要研究个体或单位在其中一决策上的最后一单位收益或成本,弹性分析则是研究个体或单位对外部影响的敏感程度。
边际分析是指在边际条件下,对单位变动的最后一个单位进行分析的方法。
边际成本是指增加或减少单位产量所引起的总成本的变化,边际效益是指增加或减少单位产量所引起的总效益的变化。
在做决策时,我们通常会比较边际成本与边际效益之间的关系,当边际效益大于边际成本时,持续增加产量,反之亦然。
这种比较的方法称为边际收益递减原理。
以生产为例,边际成本和边际效益可以用来优化生产过程。
当边际成本低于边际效益时,单位的生产成本还可以通过增加产量来降低,从而带来更多的利润。
但是,随着产量的增加,边际成本将逐渐增加,当边际成本高于边际效益时,增加产量将不再有利可图。
弹性分析是指个体或单位对其中一变量变化的敏感程度。
根据弹性的概念,我们可以衡量其中一变量的变化对其他相关变量的影响。
常见的有价格弹性、收入弹性等。
价格弹性衡量了消费者对产品或服务价格变化的敏感程度。
价格弹性大于1表示消费者对价格变化非常敏感,产品或服务的需求量会随价格的变动而显著变化。
价格弹性小于1表示消费者对价格变化不太敏感,产品或服务的需求量不会随价格的变动而显著变化。
收入弹性衡量了消费者对收入变化的敏感程度。
收入弹性大于0表示产品或服务的需求量与收入正相关,收入增加时需求量也会增加,收入弹性小于0表示产品或服务的需求量与收入负相关,收入增加时需求量会减少。
边际分析和弹性分析在经济学中起着重要的作用。
通过边际分析,我们可以优化决策,确定最优的产量或资源配置方案。
而弹性分析则帮助我们了解市场需求和供给的变化,指导企业和政府制定相应的决策策略。
例如,在企业的市场定价决策中,通过对价格弹性的分析,企业可以了解到市场对产品价格变化的敏感程度,进而决定是否降价来吸引更多的顾客。
另外,在政府的税收政策制定中,通过收入弹性的分析,政府可以了解到不同收入水平的人群对税收的敏感程度,进而制定相应的税收政策来实现贫富均衡或者调控经济发展。