《微积分一》边际分析与弹性分析
- 格式:ppt
- 大小:783.50 KB
- 文档页数:29
⾼等数学在经济学中的边际、弹性分析及应⽤2019-09-03【摘要】边际与弹性是⾼等数学中的重要概念,是微分学在经济分析中的有效应⽤。
本⽂从经济理论中的“边际”和“弹性”出发,对⽬前经济学中⼏个常见问题进⾏了数学化探讨,阐述了⾼等数学在经济学中的相关应⽤。
【关键词】边际弹性应⽤边际与弹性分析是经济数量分析的重要组环节,是⾼数微分法的重要应⽤之⼀。
在分析经济量的之间关系时,不仅要知道因变量依赖于⾃变量变化的函数关系,还要进⼀步了解这个函数值随⾃变量的变化的速率,函数的变化率,即它的边际函数;不仅要了解相应函数的绝对变化率,⽽且还要了解它的相对变化率,即它的弹性函数;经过进⼀步的分析,就可以探求如何取得最佳经济效益,达到理想应⽤的⽬的。
⼀、边际概念及其在经济学中的应⽤(⼀)边际概念边际作为⼀个数学概念,是指函数y=f(x)中变量x的某⼀值的“边缘”上y的变化。
它是瞬时变化率,也就是y对x的导数。
⽤数学语⾔表达为:设函数y=f(x)在[α,b]内可导,则称导数f'(x)为y=f(x)在[α,b]内的边际函数;在x0处的导数值f'(x0)称为y=f(x)在x0处的边际值。
根据不同的经济函数,边际函数有不同的称呼,如边际成本、边际产值、边际消费、边际储蓄、边际收益、边际利润等。
(1)边际成本。
在经济学中,把产量增加(或减少)⼀个单位时所增加(或减少)的⽣产总成本,定义为边际成本,边际成本就是总成本函数在所给定点的导数,记作MC=C′(q)。
(2)边际收益。
是指销售量增加(或减少)⼀个单位时所增加(或减少)的销售产品总收⼊,是总收⼊函数在给定点的导数,记作MR=R′(q)。
(3)边际利润。
对于利润函数 L(q)=R(q)-C(q),边际利润为 ML=L′(q)=R′(q)CC′(q)=MR-MC,其指销售量增加(或减少)⼀个单位销售量时所增加(或减少)的利润。
(⼆)边际理论在经济学中的应⽤边际分析理论可⽤来预测商品价格需求量或供给量,确定企业内部⽣产资料同劳动数量之间最合理的配置。
微积分在经济学中的应用微积分是数学中的重要分支,也是应用最广泛的数学工具之一。
它的特点是能够对连续变化的量进行研究,因此在经济学中的应用非常广泛。
本文将从宏观经济学和微观经济学两个层面,探讨微积分在经济学中的重要性和应用。
一、宏观经济学中的微积分应用宏观经济学是对整个经济系统进行研究的学科,它关注的是经济的总体运行规律和宏观经济变量之间的关系。
微积分在宏观经济学中的应用主要体现在以下几个方面:1. 经济增长模型经济增长是宏观经济学中的核心问题之一。
微积分可以帮助我们建立经济增长模型,探讨经济增长率和各种因素之间的关系。
例如,通过对经济生产函数进行微积分运算,可以得到边际产出、边际投入和边际技术效率等重要经济指标,进而研究经济增长的规律和影响因素。
2. 国民收入计算国民收入是衡量一个国家经济发展水平的重要指标。
微积分在国民收入计算中发挥了重要作用。
它可以帮助我们对经济数据进行求和、积分等运算,从而准确计算出国民收入和国内生产总值等宏观经济指标。
3. 经济周期分析经济周期是宏观经济波动的一种表现形式,对其进行研究有助于把握经济的发展趋势和规律。
微积分可以帮助我们对经济数据进行趋势分析、峰值检测等,从而辅助预测经济周期的起伏和变化。
二、微观经济学中的微积分应用微观经济学是研究个体经济单位之间的行为和相互关系的学科,微积分在微观经济学中的应用主要体现在以下几个方面:1. 边际分析边际分析是微观经济学的基础理论之一,而微积分是边际分析的重要工具。
通过微积分的求导和积分运算,我们可以准确计算出边际成本、边际效用和边际收益等经济指标,从而帮助决策者做出最优决策。
2. 弹性分析弹性是衡量市场供求关系敏感度的指标,对于分析市场需求和供给的变化尤为重要。
微积分可以帮助我们计算和分析价格弹性、收入弹性和交叉弹性等,从而更好地理解市场的运行机制和市场参与者的行为。
3. 市场均衡分析市场均衡是微观经济学中的重要概念,用于描述市场上供给和需求的平衡状态。
《高等数学B-微积分(一)》本科教学大纲课程编号:上海立信会计金融学院《高等数学B—微积分(一)》课程教学大纲一、课程基本信息课程名称:高等数学B-微积分(一)英文名称:Advanced Mathematics (B)-Calculus Ⅰ课程编号:课程类别:长学段-专业必修课预修课程:初等数学开设部门:统计与数学学院适用专业:经管类专业(本科)学分:4总课时:60学时其中理论课时:60学时,实践课时:0学时二、课程性质、目的微积分是经济管理类本科专业的学科专业课。
本课程的教学目的是使学生掌握经济管理学科所需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,同时通过本课程的教学,培养学生的抽象思维和逻辑推理能力,为后继课程的学习和将来进一步的专业发展打好扎实必要的数学基础。
思政元素融入课程,引导学生树立正确的科学观,培养学生科学理性思维能力、创新思维能力、独立思考能力,解决实际问题能力,培养探索未知、追求真理、勇攀科学高峰的责任感和使命感;引导学生树立正确的人生观和价值观,了解数学发展史和数学文化,提升数学素养、弘扬中华文明、培养民族文化自信,以精神文明为切入点,科学育人、文化育人。
在大纲中,概念、理论方面用“理解”表述,方法、运算方面用“掌握”表述的内容,应该使学生深入领会和掌握,并能熟练运用;概念理论方面用“了解”表述,方法、运算方面用“熟悉”表述的内容,也是必不可少的,只是在教学要求上低于前者。
三、教学内容、基本要求、课时分配四、课程考核考核方式:考试;期末考核形式:课程试卷闭卷(教考分离);题型:填空、选择、计算、证明题和应用题等;课程类别:■必修(考试)课程□除体育类、短学段开设、实践教学类以外的必修(考查)课程□选修课程□体育类必修(考查)课程□短学段开设的必修(考查)课程□实践教学类必修(考查)课程平时成绩占50 %,期末成绩占50 %(见下表)。
平时成绩考核项目参照表平时成绩考核评定依据与标准:1. 课堂表现(含考勤):随机抽查考勤、课堂提问、参与讨论等20次,每次5分,满分100分,按20%的比例记入平时成绩;2. 课外作业:作业共收15次,随机抽10次记分,每次满分10分,满分100分,按30%的比例记入平时成绩;3. 阶段测验:在学期1/4和3/4节点处各安排1次阶段测验,每次满分100分,取两次成绩平均分,按30%的比例记入平时成绩;4. 期中测验:在学期1/2节点处安排1次期中测验,满分100分,按20%的比例记入平时成绩。
摘要:弹性,是经济学中的一个重要概念。
它在经济活动分析中起着极其重要的作用。
本文先从弹性的概念入手,以经营管理活动中的需求对价格的弹性为主要研究对象,来讨论利用弹性去定量地分析经济问题时,需要注意的问题,并给出三点说明。
关键词:导数;弹性分析;需求弹性;供给弹性弹性是就两个经济变量而言的,是研究两个变量之间相互联系和相互影响的,它是一个与被衡量对象计量单位无关的数,即是一个无量纲的数。
正因为如此,弹性可以单独作为一种定量分析法而存在。
弹性分析是相关分析与动态分析相结合的一种统计方法,在相互联系中分析其间变动的规律性。
在经济管理中,弹性分析对于我们认识和掌握微观调控机制,达到最佳效益目标进行最优决策能发挥重大作用。
所以为了能够在经济分析中进行正确的弹性分析,对弹性的相关概念和内容做以下三点 说明。
一、弹性概念的正确理解弹性,意指反应。
函数的弹性,是指自变量变动时,函数(因变量)变动的反应性。
即弹性指的是因变量的变化率与自变量的变化率的比值:E ===∆→∆→lim lim x x 00∆∆xyyx ∆∆y x xy x y y',也叫做y 对x 的弹性系数(或叫弹性)。
所以,弹性系数指当变量之间存在依存关系(即相对关系)时,一变量对另一变量变动的反应程度。
它是一个相对数,衡量某变量相对 变动所引起的另一相关变量的相对变动,其大小是两个变量变动相对数(增减率)之比的相对量,习惯上称之为弹性 系数。
综上所述,对于弹性我们还可以通俗地理解一下,如果自变量增加1%,导致因变量增加3%,那么弹性即为3;如果自变量增加1%,因变量减少2%,那么弹性即为-2。
二、弹性分析有如下几种考察情况(一)需求的价格弹性E p =−dQ P dP Q,其Q =Q (p )为需求函数。
需求的价格弹性是指一种商品的需求量变动对于该商品价格变动的反应程度。
也就是说价格和需求量的变动,是反向变动的关系。
分子分母反向变动,整个公式其实是一个负值。
一、边际分析边际的概念.如果一个经济指标y 是另一个经济指标x 的函数)(x f y =,那么当自变量有改变量x ∆时,对应有函数的改变量y ∆.在经济学中,当自变量在x 处有一个单位改变量时,所对应的函数改变量为该函数所表示的经济指标在x 处的边际量.例如当生产量在x 单位水平时的边际成本,就是在已生产x 单位产品水平上,再多生产一个单位产品时总成本的改变量,或者可以说是再多生产一个单位产品所花费的成本.设x 的改变量为x ∆时,经济变量y 的改变量为y ∆=)()(x f x x f -∆+,则相应于x ∆,y 的平均变化率是xx f x x f x y ∆-∆+=∆∆)()( 由边际的概念,在上式中取1=∆x 或1-=∆x 就可得到边际量的表达式.但边际概念的定义和计算使我们想到能否用函数)(x f y =的导数作为y 的边际量呢?如果按纯粹的数学概念来讲,似乎行不通,因为导数定义要求自变量增量必须趋向于零,而实际问题中自变量x 的经济意义通常是按计件的产量或销量作为单位的,改变量为小数且趋于零不合乎实际.但我们可以这样考虑,对于现代企业来讲,其产销量的数额和一个单位产品相比是一个很大数目,1个单位常常是其中微不足道的量,可以认为改变一个单位的这种增量是趋近于零的.正是这个缘故,在经济理论研究中,总是用导数xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示经济变量y 的边际量,即认为)(x f '的经济意义是自变量在x 处有单位改变量时所引起函数y 的改变数量.1.边际成本在经济学中,边际成本定义为产量为x 时再增加一个单位产量时所增加的成本.成本函数的平均变化率为xx C x x C x C ∆-∆+=∆∆)()( 它表示产量由x 变到x +x ∆时,成本函数的平均改变量.当成本函数()C x 可导时,根据导数定义,成本函数在x 处变化率为xx C x x C x C x ∆-∆+='→∆)()(lim )(0 在经济上我们认为)(x C '就是边际成本.因此,边际成本)(x C '是成本函数)(x C 关于产量x 的一阶导数.,它近似等于产量为x 时再生产一个单位产品所需增加的成本,即)()1()()(x C x C x C x C -+=∆≈'在实际问题中企业为了生产要有厂房、机械、设备等固定资产,在短期成本函数中作为固定成本0C ,它是常数,而生产中使用劳力,原料、材料、水电等方面的投入随产量x 的变化而改变,生产的这部分成本是可变成本,以)(1x C 记,于是成本函数可表示为)()(10x C C x C +=此时边际成本为)()()()(110x C x C C x C '='+'=' 由此,边际成本与固定成本无关,它等于边际可变成本.在实际经济量化分析问题中,经常将产量为x 时的边际成本)(x C '和此时已花费的平均成本xx C )(做比较,由两者的意义知道,如果边际成本小于平均成本,则可以再增加产量以降低平均成本,反之如果边际成本大于平均成本,可以考虑削减产量以降低平均成本.由此可知,当边际成本等于平均成本时可使产品的平均成本最低.2.边际收入和边际利润在经济学中,边际收入定义为销量为x 时再多销售一个单位产品时所增加的收入.设收入函数)(x R R =是可导的,收入函数的变化率是xx R x x R x R x ∆-∆+='→∆)()(lim )(0 同边际成本道理一样,我们认为)(x R '就是边际收入.因此,边际收入)(x R '是收入函数)(x R 关于产量x 的一阶导数.,它近似等于销量为x 时再销售一个单位产品所增加(或减少)的收入.即)()1()()(x R x R x R x R -+=∆≈'设利润函数为)(x L L =,由于利润函数是收入函数与成本函数之差,即)()()(x C x R x L -=则边际利润是)()()(x C x R x L '-'='因此,边际利润)(x L '是利润函数)(x L 关于产量x 的一阶导数,它近似等于销量为x 时再销售一个单位产品所增加(或减少)的利润.在经济学中还经常用到边际效用,边际产量、边际劳动生产率等概念,它和边际成本、边际收入、边际利润的经济解释方法大同小异,在此不再阐述.下面用具体例子说明边际概念在实际问题中的意义和作用.例 1 设某企业的产品成本函数和收入函数分别为52003000)(2x x x C ++=和20350)(2x x x R +=,其中x 为产量,单位为件,)(x C 和)(x R 的单位为千元,求:(1)边际成本、边际收入、边际利润;(2)产量20=x 时的收入和利润,并求此时的边际收入和边际利润,解释其经济意义.解 由边际的定义有(1)边际成本 x x C 52200)(+=' 边际收入 10350)(x x R +=' 边际利润 x x C x R x L 103150)()()(-='-'=' (2)当产量为20件时,其收入和利润为702020)20(20350)20(2=+⨯=R (千元) 6070807020)20()20()20(-=-=-=C R L (千元)其边际收入与边际利润为3521020350)20(=+='R (千元/件)144208352)20()20()20(=-='-'='C R L (千元/件)上面计算说明,在生产20件产品的水平上,再把产品都销售的利润为负值,即发生了亏损,亏损值为60千元;而此时的边际收入较大,即生产一件产品收入为352千元,从而得利润144千元.这样以来,该企业的生产水平由20件变到21件时,就将由亏损60千元的局面转变到盈利8460144=-千元的局面,故应该再增加产量.二、弹性分析一个简单引例.设2x y =,当x 由10变到11时,y 由100变到121.显然,自变量和函数的绝对改变量分别是x ∆=1,y ∆=21,而它们的相对改变量xx ∆和y y ∆分别为 x x ∆=%10101= y y ∆=%2110021= 这表明,当自变量x 由10变到11的相对变动为10%时,函数y 的相对变动为21%,这时两个相对改变量的比为1.2%10%21==∆∆=x x y yE 解释E 的意义:x =10时,当x 改变1%时,y 平均改变2.1%,我们称E 为从x =10到x =11时函数2x y =的平均相对变化率,也称为平均意义下函数2x y =的弹性.这个大小度量了)(x f 对x 变化反应的强烈程度.特别是在经济学中,定量描述一个经济变量对另一个经济变量变化的反应程度对科学决策至关重要.如果极限00000000/)(/)]()([lim /)(/limx x x f x f x x f x x x f y x x ∆-∆+=∆∆→∆→∆ 存在,则称此极限值为函数)(x f y =在点x 0处的点弹性,记为x x Ex Ey =,=∆∆⋅=→∆=x y x f x Ex Ey x x x )(lim 0000)()(000x f x f x ' 称)()(x f x f x Ex Ey '=为函数)(x f y =在区间Ⅰ的点弹性函数,简称弹性函数.而称00000/)(/)]()([/)(/x x x f x f x x f x x x f y ∆-∆+=∆∆ 为函数)(x f y =在以x 0与x 0+x ∆为端点的区间上的弧弹性.弧弹性表达了函数)(x f 当自变量x 从x 0变到x 0+x ∆时函数的平均相对变化率,而点弹性正是函数)(x f 在点x 0处的相对变化率.例2 求指数函数)1,0(≠>=a a a y x 的弹性函数.解 因为a a y x ln ='所以a x ax a a y x y Ex Ey x x ln ln =⋅='=.1. 需求弹性函数的弹性表达了函数)(x f 在x 处的相对变化率,粗略来说,就是当自变量的值每改变百分之一所引起函数变化的百分数.需求弹性就是在需求分析中经常用来测定需求对价格反应程度的一个经济指标.设某商品的市场需求量Q 是价格p 的函数:)(p Q Q =,)(p Q 是可导函数,则称Q Qp p Q p Q p Ep EQ '='=)()( 为该商品的需求价格弹性,简称为需求弹性,记为p ε.可以这样解释p ε的经济意义;当商品的价格为p 时,价格改变1%时需求量变化的百分数.为什么不使用变化率而要使用这种相对变化率来表达价格改变对需求量的反应呢?由弹性定义看到,弹性与量纲无关,需求弹性与需求量和价格所用的计量单位无关.以对水果的需求为例,在我国将以m 公斤/元来度量,在美国将以n 公斤/美元来度量,这就无法比较两国需求对价格的反应.正因为弹性可不受计量单位的限制,所以在经济活动分析中广泛采用,除需求价格弹性,还有收入价格弹性,成本产量弹性等.由经济理论知道,一般商品的需求函数为价格的减函数,从而0)(<'p Q ,这说明需求价格弹性p ε一般是负的.由此,当商品的价格上涨(或下跌)1%时,需求量将下跌(或上涨)约%p ε,因此在经济学中,比较商品需求弹性的大小时,是指弹性的绝对值p ε,一般在经济分析中将需求弹性记为p p εε-=. 当1=p ε时,称为单位弹性,此时商品需求量变动的百分比与价格变动的百分比相等;当1>p ε时,称为高弹性,此时商品需求量变动的百分比高于价格变动的百分比,价格的变动对需求量的影响比较大;当1<p ε时,称为低弹性,此时商品需求量变动的百分比低于价格变动的百分比,价格的变动对需求量影响不大.在商品经济中,商品经营者关心的是提价(0>∆p )或降价(0<∆p )对总收入的影响,利用需求弹性的概念,可以对此进行分析.设收入函数为R ,则pQ R =,此时边际收入为Q p Q p R '+=')()1(Q Qp Q '+=)1(p Q ε+= (2) 当p ∆很小时,有p Q p p R R p ∆+=∆'≈∆)1()(ε p Q p ∆-=)1(ε (3)由此可知,当1>p ε(高弹性)时,商品降价时(0<∆p ),0>∆R ,即降价可使收入增加,商品提价时(0>∆p ),0>∆R ,即提价将使总收入减少. 当1<p ε(低弹性)时,降价使总收入减少,提价使总收入增加. 当1=p ε(单位弹性)时,0=∆R ,提价或降价对总收入无影响. 上述分析使我们看到,根据商品需求弹性的不同,应制定不同的价格政策,以使收入快速增长.例3 设某种产品的需求量Q 与价格p 的关系为p p Q )41(1600)(= (1)求需求弹性;(2)当产品的价格10=p 时再增加1%,求该产品需求量变化情况.解 (1)由需求弹性公式'⎥⎦⎤⎢⎣⎡⋅='=p pp p Q Q p )41(1600)41(1600ε p p 39.141ln -≈= 需求弹性为-1.39p ,说明产品价格p 增加1%时,需求量Q 将减少1.39p %.(2)当产品价格10=p 时,有9.131039.1-=⨯-=p ε这表示价格10=p 时,价格增加1%,产品需求量将减少13.9%;如果价格降低1%,产品的需求量将增加13.9%.这也表明此商品的需求弹性是高弹性的,适当降价会使销量大增.例4 已知某企业的产品需求弹性为2.1,如果该企业准备明年降价10%,问这种商品的销量预期会增加多少?总收益预期会增加多少?题中价格的改变量是相对量,所以所求的销量和总收益的改变也采用相对改变量.解 由需求函数弹性定义知,当p ∆较小时pQ Q p dp dQ Q p p ∆∆⋅≈⋅=ε 即p p Q Q p ∆≈∆ε故当1.2=p ε,1.0-=∆pp 时,有 %21)1.0(1.2=-⨯-≈∆QQ 因为R =PQ ,由(3)式有p Q p Q R R p ∆⋅-≈∆)1(εpp p ∆-=)1(ε 当1.2=p ε时,有%11)1.0()1.21(=-⨯-≈∆RR 可见,明年企业若降价10%,企业销量将增加21%,收入将增加11%.(注:素材和资料部分来自网络,供参考。
浅析微积分在经济学中的应用黄尹艺(四川大学锦城学院,会计2班,130410236)[摘 要]经济学中的很多经济现象、经济理论都能够用数学知识去解释。
本文本着“数学为体,经济为用”的原则,对于微积分在经济学领域中的连续复利、边际分析、弹性分析、最优化问题作一些初步分析。
[关键词] 微积分;导数;极限;边际分析;弹性分析随着数学理论的不断完善和经济的飞速发展,数学与经济学的联系越来越紧密。
数学是经济学理论研究的理想工具,借助数学模型研究经济学,具有清晰、深入、严密三大优势。
微积分学作为数学的一个基础分支学科,在经济学中有着极为广泛的应用。
经济量化分析已成为经济学研究的主要手段。
现主要从微积分与经济的相关联系出发,简要讨论微积分在经济学中的应用及其存在的经济学意义。
一、 微积分的基本思想微积分学是数学的一个基础分支学科,源于代数和几何。
内容主要包括函数、极限、导数、微分学、积分学及其应用。
微积分有两个基本想法:其一是微分学,包括求导数的运算,是一套关于变化率的理论。
它使得函数,速度,加速度和曲线的斜率等均可在一个通用的符号化基础上进行讨论;其二是积分学,包括积分的运算,为计算被一个函数图像所包的面积提供一套通用的方法,引入诸如体积的相关概念。
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中。
二、 微分在经济学中的应用在经济学领域中,微积分被运用十分基础和广泛,是学好经济学、剖析现实经济现象的基本工具。
1、 极限在经济学中的应用极限概念是微积分中最基本的概念,在极限的概念基础上面,很多微积分的概念理论得到发展,很多经济学的知识也得到有效的解决。
比如利用极限解决连续复利问题。
例 设银行存款现值P 和将来值B ,年利率为r ,则t 年后的本利和即将来值为t r)(1B +=若一年分n 次计算复利,则每期利率为三,一年后的本利和即将来值为 n nr P B )1(+= 而t 年后的本利和即将来值为 tn nrp B )1(+= 当∞→n 时,则t 年后的本利和即将来值为 t tn n pe nr p B =+=∞→)1(lim 从而现值p 和将来值B 之间的关系为t pe =B或者 t Be p -=现值P 为1,利息r 为100%,1t =,则得 e B =例子中的极限应用体现了在经济学中当一个数值含有极限的意义即趋向无穷大或0时,利用微积分中的极限的思想去解题可以步骤简化,思路清晰的解决很多经济学的这些问题。