简单开时锁, 的我概们率往约往通为0过.9计58算. A 的概率P( A)来求A的概率P(A).
例3.班级联欢时, 主持人拟出了一些节目: 跳双人舞、独唱、朗 诵等. 指定3个男生和2个女生来参与, 把5个人分别编号为1, 2, 3, 4, 5, 其中1, 2, 3号是男生, 4, 5号是女生. 将每个人的号分别写在 5张卡片上, 并放入一个箱子中充分混合, 每次从中随机地取出 一张卡片, 取出谁的编号谁就参与表演节目.
对立事件是互斥事件的特殊情形! 2.互斥事件概率的加法公式:
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)
P( A) 1 P( A)
例2.从男女学生共有36名的班级中, 任意选出2名委员, 任何人都 有同样的当选机会. 如果选得同性委员的概率等于1/2. 求男女生 相差几名? 解: 设男生有x名, 则女生有(360-x)名.
P( A) 1 P( A) 1 6 7 0.7. 20 10
即连续抽取2张卡片, 取出的2人不全是男生的概率为0.7.
解: (1)利用树状图可以列出连续抽取2张的所有可能结果.
2
1
1
1
1
13 4
23 4
32 4
42 3
52 3
5
5
5
5
4
由图可知, 试验的所有可能结果数是20, 且每一种结果出现
它被取出的可能性和其他卡片相同.
我们用一个有序实数对来表示抽取的结果, 例如, “第一次取出2号, 第二次取 出4号”就用(2,4)来表示. 如下表:
第二次抽取
第一次抽取
1
2
3
4
5
1
(1,1) (1,2) (1,3) (1,4) (1,5)