然后根据你的结果,你能 发现P(A+B)与P(A)+P(B) 有什么样关系?
P(A+B)=P(A)+P(B)
思考交流:
前面(4)中事件A=“点数为5”,事件B=“点数超过3”, 在(3)中,我们发现有P(A+B)=P(A)+P(B)=1,那么在(4) 中,P(A+B)=P(A)+P(B)是否成立?
0.1 0.16 0.3 0.3
(1)至少3人排队等候的概率是多少? (2)有人排队等候的概率是多少?
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1 0.16 0.3 0.3 0.1
0.04
不能少
(1)至少3人排队等候的概率是多少? (2) 有人排队等候的概率是多少?
解:记“有0人等候”为事件A,“有1人等候”为事件B,“有2人等候” 为事件C,“有3人等候”为事件D,“有4人等候”为事件E,“有5人 及至5人以上等候”为事件F,则易知A,B,C,D,E,F互斥
某学校成立了数学数学、英语、音乐3个课外兴趣组 分别有39,32,33个成员,一些成员参加了不止1个小组, 具体情况如图所示。随机选取1个成员: 英语 音乐 7 ⑴求他参加不超过2个小组的概率 6 8 8 ⑵求他至少参加了2个小组的概率
11 10
数学 10
分析:从图中可以看出,3个兴趣小组总人数: 6+7+8+8+11+10+10=60
课堂练习
1. 对飞机连续射击两次,每次发射一枚炮弹,记事件A:两 次都击中飞机.事件B:两次都没有击中飞机. 事件C:恰有一 次击中飞机.事件D:至少有一次击中飞机.其中互斥事件 C,B与C,B与D 是 A与B,A与. 2、已知A、B为互斥事件,P(A)=0.4,P(A+B)=0.7, P(B)= 0.3 3、经统计,在某储蓄所一个营业窗口等候的人数为及相应 概率如下: 排队人数 概率 0 1 2 3 4 0.1 5人及5人以上 0.04