聚类分析(数学建模)讲解
- 格式:ppt
- 大小:2.76 MB
- 文档页数:77
数据挖掘-聚类分析简介聚类分析是一种无监督学习技术,用于将数据集中的对象(例如数据点或样本)分成相似的组(簇),以便组内的对象相互之间更相似,而不同组之间的对象差异较大。
聚类分析的目标是发现数据中的隐藏模式、结构或群体,并将数据集分成具有相似性质或特征的子集。
以下是聚类分析的详细介绍:聚类的主要步骤:1.选择合适的距离度量:聚类算法需要一种方法来衡量数据点之间的相似性或距离。
常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度等。
2.选择聚类算法:选择适合数据和问题的聚类算法。
常见的聚类算法包括K均值聚类、层次聚类、DBSCAN(基于密度的聚类)、高斯混合模型等。
3.初始化:对于迭代型聚类算法(例如K均值),需要初始化聚类中心或其他参数。
初始值的选择可以影响聚类结果。
4.分配数据点到簇:根据数据点之间的相似性,将每个数据点分配到一个簇中。
不同的算法使用不同的分配策略。
5.更新簇的代表:对于迭代聚类算法,计算每个簇的新代表,通常是簇内所有数据点的平均值。
6.重复迭代:重复步骤4和步骤5,直到满足停止条件,例如簇中心不再改变或达到最大迭代次数。
7.评估聚类结果:使用合适的评估指标来评估聚类的质量。
常用的指标包括轮廓系数、Davies-Bouldin指数、互信息等。
常见的聚类算法:1.K均值聚类(K-Means Clustering):K均值是一种迭代型聚类算法,通过指定簇的数量K来将数据分成K个簇。
它以簇的中心点(均值)作为代表。
2.层次聚类(Hierarchical Clustering):层次聚类是一种层次化的聚类方法,可以创建层次化的聚类结构。
它可以是自底向上的凝聚聚类或自顶向下的分裂聚类。
3.DBSCAN(Density-Based Spatial Clustering of Applications with Noise): DBSCAN 是一种基于密度的聚类算法,能够识别不规则形状的簇,并能处理噪声数据。
聚类分析在数学建模中的应用聚类分析是一种无监督学习方法,主要用于发现数据中的潜在分组或模式。
它在数学建模中起着重要的作用,能够帮助研究人员在未知的数据集中发现隐藏的结构和关联。
本文将介绍聚类分析在数学建模中的应用,并详细讨论其几个典型的应用场景。
1.生物医学研究中的应用:聚类分析在生物医学研究中被广泛应用于基因表达数据、蛋白质相互作用网络、疾病分类等方面。
例如,基因表达数据通常具有高维度和复杂性,聚类分析可以将不同的基因分组,找到相关基因集合,从而帮助研究人员发现与特定疾病相关的生物过程和信号通路。
在药物研发过程中,聚类分析还可以帮助研究人员识别潜在药物靶点和候选靶向药物。
2.社交网络分析中的应用:聚类分析在社交网络分析中发挥着重要作用。
通过对社交网络数据进行聚类分析,可以将社交网络中的用户划分为不同的群体或社区,并发现隐藏的社交群体结构。
这可以帮助研究人员了解社交网络用户的行为、兴趣和关系,并为灵活的社交网络设计和推荐系统提供支持。
3.图像分析中的应用:聚类分析在图像分析中也有广泛的应用。
通过对图像数据进行聚类分析,可以将图像分组为具有相似特征的集合,从而实现图像分类、图像和图像压缩等任务。
例如,对于大规模的图像库,聚类分析可以帮助研究人员将图像分组为具有相似主题或特征的集合,从而提高图像的效率和精度。
4.金融风险管理中的应用:聚类分析在金融风险管理中也有着重要的应用。
通过对风险因素进行聚类分析,可以帮助金融机构识别风险因素的潜在结构和关联,并评估不同风险因素之间的相互作用。
这对于制定有效的风险管理策略和规避潜在风险非常重要。
例如,聚类分析可以帮助银行发现具有相似信用风险的客户群体,并采取相应的措施来降低风险。
5.消费者行为分析中的应用:聚类分析在消费者行为分析中也有重要的应用。
通过对消费者数据进行聚类分析,可以将消费者划分为不同的行为类型或偏好群体,并发现不同群体之间的行为模式和趋势。
这可以帮助企业了解消费者的需求和喜好,并制定相应的市场营销策略。
第五讲聚类分析聚类分析是一种无监督学习方法,旨在将样本数据划分为具有相似特征的若干个簇。
它通过测量样本之间的相似性和距离来确定簇的划分,并试图让同一簇内的样本点相似度较高,而不同簇之间的样本点相似度较低。
聚类分析在数据挖掘、模式识别、生物信息学等领域有着广泛的应用,它可以帮助我们发现隐藏在数据中的模式和规律。
在实际应用中,聚类分析主要包含以下几个步骤:1.选择合适的距离度量方法:距离度量方法是聚类分析的关键,它决定了如何计算样本之间的相似性或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离、切比雪夫距离等。
2.选择合适的聚类算法:聚类算法的选择要根据具体的问题和数据特点来确定。
常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。
3.初始化聚类中心:对于K-means算法等需要指定聚类中心的方法,需要初始化聚类中心。
初始化可以随机选择样本作为聚类中心,也可以根据领域知识或算法特点选择合适的样本。
4.计算样本之间的相似度或距离:根据选择的距离度量方法,计算样本之间的相似度或距离。
相似度越高或距离越小的样本越有可能属于同一个簇。
5.按照相似度或距离将样本划分为不同的簇:根据计算得到的相似度或距离,将样本划分为不同的簇。
常用的划分方法有硬聚类和软聚类两种。
硬聚类将样本严格地分到不同的簇中,而软聚类允许样本同时属于不同的簇,并给出属于每个簇的概率。
6.更新聚类中心:在K-means等迭代聚类算法中,需要不断迭代更新聚类中心,以找到最优划分。
更新聚类中心的方法有多种,常用的方法是将每个簇内的样本的均值作为新的聚类中心。
7.评估聚类结果:通过评估聚类结果的好坏,可以判断聚类算法的性能。
常用的评估指标有轮廓系数、Dunn指数、DB指数等。
聚类分析的目标是让同一簇内的样本点尽量相似,而不同簇之间的样本点尽量不相似。
因此,聚类分析常常可以帮助我们发现数据中的分组结构,挖掘出数据的内在规律。
聚类分析在市场细分、社交网络分析、基因表达数据分析等领域都有广泛的应用。
随机抽取管理学院10名学生,对其4门课程的考试成绩进行统计,如下表所示,这4门课程分别为多元统计分析1X ,运筹学2X ,经济学3X ,管理学4X . 使用主成分分析方法对学生成绩进行分析.>> x1=[77 63 75 55 31 67 70 66 70 57]; >> x2=[82 78 73 72 55 81 81 81 68 73]; >> x3=[67 80 71 63 60 82 78 73 72 55]; >> x4=[81 81 81 68 73 67 80 71 63 60];>> data=[x1;x2;x3;x4]'; %输入观测值数据矩阵 >> [n,m]=size(data);>> for i=1:m %将数据矩阵中心标准化sddata(:,i)=(data(:,i)-mean(data(:,i)))./std(data(:,i),1); end>> [P,score,egenvalue,t2]=princomp(sddata) %做主成分分析 P =-0.5511 0.3268 -0.3624 0.6769 -0.5588 0.3358 -0.2089 -0.7289 -0.5110 -0.1193 0.8460 0.0944 -0.3505 -0.8753 -0.3307 -0.0398score =-1.3489 -0.2567 -1.2840 -0.0315 -1.2458 -0.9740 0.5341 -0.2698 -0.8704 -0.7467 -0.5863 0.7336 1.1642 0.3096 -0.2225 -0.2707 3.3634 -1.5690 0.3950 -0.0572 -1.1054 0.8480 1.1534 -0.2345 -1.5954 -0.5212 0.0958 -0.1867 -0.6992 0.4872 0.1005 -0.4105 0.4738 0.9799 0.5768 1.03061.8637 1.4430 -0.7628 -0.3031egenvalue = 2.7502 0.9334 0.5275 0.2334 t2 =3.8620 2.4333 3.8297 1.0034 7.0609 3.9724 1.3834 1.1732 6.29124.9906>> for k=1:mgxl(k)=sum(egenvalue(1:k))/sum(egenvalue); end>> gxl %输出累计贡献率 gxl =0.6188 0.8288 0.9475 1.0000>> plot(score(:,1),score(:,2),'r+') %画出第一第二主成分的散点图 >> gname第一主成分43211X X X X Y 0.3505-0.5110-0.5588--0.5511=,所有科目考试成绩的系数均为负,且差异不大,故1Y 可解释为学生的综合学习成绩,该主成分得分越小(散点图中的位置越靠左),综合成绩越好.第二主成分43212X X X X Y 0.8753-0.1193-0.33580.3268+=,数学科目考试成绩的系数均为正,专业科目考试成绩的系数均为负,故2Y 可解释为学生的数学科目与专业科目学习成绩的差异,该主成分得分绝对值越大则差异越大,由散点图可以看出,10号学生的数学科目明显优于其专业科目成绩,而5号学生的数学科目明显差于其专业科目成绩.>> Y1=score(:,1);ZF=(sum(data'))'; %提取第一主成分得分,求每个学生的总分 >>for k=1:norder(k,1)=find(Y1==min(Y1));Y1(order(k,1))=inf; %按第一主成分得分由高到低排序order(k,2)=find(ZF==max(ZF));ZF(order(k,2))=-inf; %按总分由高到低排序 end >> orderorder =7 7 1 1 2 2 6 3 3 6 8 8 9 9 4 4 10 10 5 5两种排序方式下3号学生和6号学生的排序结果相反,原因在于43211X X X X Y 0.3505-0.5110-0.5588--0.5511可见,这四个科目成绩的重要性是依次递减的,3号学生的总分虽略高于6号学生,但他的最高分出现在重要性最低的第4科.>> R=sddata'*sddata./n %求标准化数据的样本相关矩阵R =1.0000 0.7867 0.5322 0.28900.7867 1.0000 0.5749 0.27680.5322 0.5749 1.0000 0.39750.2890 0.2768 0.3975 1.0000建模2011A主成分分析-聚类分析:data1=[7.84 153.80 44.31 20.56 266.00 18.20 35.38 72.35 5.93 146.20 45.05 22.51 86.00 17.20 36.18 94.594.90 439.20 29.07 64.56 109.00 10.60 74.32 218.376.56 223.90 40.08 25.17 950.00 15.40 32.28 117.356.35 525.20 59.35 117.53 800.00 20.20 169.96 726.02 14.08 1092.90 67.96 308.61 1040.00 28.20 434.80 966.738.94 269.80 95.83 44.81 121.00 17.80 62.91 166.739.62 1066.20 285.58 2528.48 13500.00 41.70 381.64 1417.867.41 1123.90 88.17 151.64 16000.00 25.80 172.36 926.848.72 267.10 65.56 29.65 63.00 21.70 36.94 100.415.93 201.40 45.19 24.90 259.00 14.60 35.88 102.659.17 287.00 43.94 45.77 168.00 19.70 62.74 223.165.72 193.70 80.35 26.57 111.00 19.80 57.64 89.084.49 359.50 258.15 123.27 77.00 12.90 106.47 853.985.51 516.40 91.97 89.04 189.00 19.80 121.72 494.80 11.45 1044.50 94.78 136.97 202.00 22.30 472.48 602.046.14 445.40 82.69 167.39 144.00 18.40 111.24 389.807.84 347.90 57.65 97.14 213.00 19.60 70.82 307.247.41 345.70 159.45 71.03 85.00 18.10 89.34 380.928.50 614.00 744.46 130.55 156.00 32.80 228.64 1013.475.51 257.20 54.64 29.01 104.00 13.20 87.68 223.279.84 1213.50 920.84 1364.85 115.00 142.50 181.48 1818.479.39 325.80 172.29 104.89 82.00 31.50 90.90 429.293.30 212.10 50.13 38.62 139.00 10.60 66.98 186.224.09 90.50 35.02 11.82 16.00 10.40 29.09 46.846.14 583.40 95.25 233.70 155.00 21.10 97.47 311.025.31 366.40 42.34 64.65 188.00 17.40 67.11 182.653.69 323.90 35.14 34.66 50.00 13.90 65.48 253.16 21.87 424.50 73.40 59.72 1520.00 27.80 83.70 175.71 18.38 630.00 96.68 114.81 645.00 34.80 130.36 1626.02 10.53 635.30 64.03 101.35 190.00 28.30 162.64 615.103.50 463.40 112.19 72.93 118.00 14.10 60.60 193.376.35 532.00 57.51 83.76 191.00 19.50 73.46 297.14 5.51 778.70 74.66 92.48 330.00 19.70 110.20 351.63 4.49 754.80 99.88 97.92 243.00 24.90 100.79 323.37 3.50 396.30 138.37 58.97 170.00 24.20 91.76 2893.47 5.51 687.80 85.52 72.85 201.00 19.00 103.20 403.27 4.29 526.00 55.31 81.43 93.00 19.90 100.65 369.80 4.29 449.10 67.22 51.64 315.00 15.70 106.97 294.69 6.56 852.70 72.59 158.67 311.00 21.20 124.24 377.14 16.58 459.00 94.79 47.17 1900.00 19.90 71.32 215.10 7.41 337.30 77.27 248.85 90.00 20.10 99.58 210.00 5.93 568.10 75.14 118.16 135.00 23.80 111.54 572.96 4.69 599.00 69.05 122.18 121.00 19.80 102.72 427.044.90 635.50 68.42 227.76 176.00 19.50 96.33 538.985.31 600.70 44.65 45.10 51.00 15.50 65.87 186.334.29 567.60 60.25 48.67 46.00 16.10 63.74 208.065.51 228.50 49.27 30.85 62.00 22.90 45.93 102.04 4.69 568.60 306.02 70.41 900.00 16.80 79.67 196.737.20 214.70 50.33 40.16 156.00 20.80 47.76 403.98 5.31 151.90 47.24 24.44 140.00 17.30 37.49 92.55 4.90 343.30 42.01 58.81 80.00 13.80 79.07 275.82 4.90 293.90 60.29 51.03 53.00 12.60 75.93 278.37 3.89 312.90 33.79 277.82 55.00 14.00 68.24 295.61 3.69 315.90 45.43 34.05 55.00 12.60 62.84 196.33 3.11 416.30 57.88 47.64 167.00 11.90 116.19 242.04 3.89 374.00 45.17 50.19 35.00 15.00 58.11 157.35 3.89 344.30 35.29 47.87 100.00 15.10 133.72 141.022.91 252.90 45.98 71.54 32.14 14.40 42.99 146.223.30 503.40 38.74 30.46 36.43 7.20 53.73 102.864.90 303.80 56.02 65.86 63.21 40.05 90.69 3760.82 4.09 127.00 27.58 23.99 30.00 11.93 57.47 85.61 2.91 265.00 35.66 29.39 24.64 9.23 60.54 122.962.72 278.90 43.43 32.61 64.29 9.90 53.40 135.713.11 751.20 53.11 53.80 27.86 10.46 60.27 155.00 3.30 361.30 47.54 52.28 25.71 9.11 113.46 218.27 3.30 488.00 51.18 34.55 37.50 10.80 54.62 125.926.14 227.00 42.15 67.04 49.29 16.31 34.28 82.963.69 347.40 37.76 19.97 26.79 10.01 54.41 221.224.49 136.00 36.56 23.07 21.43 14.96 34.19 78.98 3.11 327.10 25.98 23.73 25.71 9.79 63.81 138.06 8.06 113.10 52.40 20.81 65.36 19.69 29.56 62.24 3.69 270.50 33.12 57.85 25.71 13.50 62.04 118.16 3.69 160.30 38.29 26.08 25.71 14.29 40.13 82.86 3.50 305.50 39.50 30.86 31.07 14.74 61.89 148.88 2.72 70.90 19.45 9.12 15.007.09 22.73 32.861.77 119.80 15.32 13.34 8.57 6.19 26.31 47.762.53 468.80 37.04 32.03 45.00 12.15 65.25 178.983.69 150.70 59.61 19.00 34.29 24.98 38.47 89.08 6.14 100.30 37.49 20.23 34.29 14.85 29.29 61.94 10.99 109.80 56.07 69.06 58.93 20.70 38.87 63.27 6.35 91.80 36.12 16.91 36.43 12.49 27.01 47.76 30.13 743.90 49.03 26.18 27.86 17.66 72.76 182.04 3.89 416.80 37.04 23.78 22.50 11.48 54.45 105.00 2.91 369.80 36.34 52.48 22.507.99 42.02 84.08 1.96 194.00 18.08 16.17 26.79 6.98 40.27 94.69 6.98 50.10 41.02 14.25 17.14 13.39 26.57 40.92 2.91 198.80 28.21 19.24 13.93 9.56 47.81 94.80 5.93 886.60 42.69 28.12 43.93 21.15 94.64 163.27 5.93 128.90 47.52 16.31 12.86 17.66 33.51 91.73 7.41 114.30 48.34 21.45 35.36 16.54 35.83 63.88 4.29 232.90 29.17 40.02 1714.29 9.79 38.65 95.414.69 132.80 36.11 17.28 20.36 15.53 37.03 82.765.72 1619.80 43.48 15.50 20.36 15.41 30.99 57.556.77 282.50 41.97 52.80 27.86 18.34 49.10 104.90 4.49 180.60 37.23 18.70 27.86 11.93 36.45 63.98 3.11 386.60 35.93 26.38 24.64 12.26 60.00 157.24 2.91 345.00 40.46 152.21 23.57 15.53 58.05 170.71 4.29 95.60 22.49 17.15 85.71 10.13 27.97 67.24 7.63 87.10 45.83 14.83 30.00 14.63 29.25 48.78 5.93 203.00 35.97 16.88 15.00 14.51 45.83 89.49 2.34 353.00 24.53 12.70 11.79 9.00 58.80 89.08 2.91 233.20 24.92 21.62 85.71 8.33 45.20 100.10 5.72 174.30 33.83 29.45 20.36 13.05 42.10 71.43 2.34 87.60 18.46 9.73 13.93 8.89 24.43 43.37 6.56 245.60 36.73 61.30 55.71 14.18 47.24 114.29 4.69 167.90 33.15 18.96 60.00 15.98 33.46 55.71 6.35 111.40 28.82 59.17 206.79 11.70 28.02 61.53 5.10 94.60 77.92 20.34 23.57 28.69 25.92 58.47 4.69 111.60 24.57 12.09 31.07 8.55 27.12 43.883.50 85.50 26.33 24.88 36.43 11.36 26.77 64.084.69 169.50 39.11 22.51 25.71 15.98 39.53 82.96 4.49 138.00 34.52 35.54 50.36 12.60 25.45 52.45 3.30 131.40 35.97 11.29 43.93 11.03 30.06 61.94 2.91 41.00 41.77 12.50 17.14 17.10 19.68 78.374.09 129.70 26.83 10.12 40.71 7.76 28.84 68.165.72 148.00 36.73 14.21 52.50 12.60 27.15 57.86 4.90 108.10 22.729.40 35.36 8.89 32.39 69.39 4.90 132.50 79.52 18.67 42.86 27.68 28.30 92.245.93 88.80 52.41 15.30 10.71 19.91 28.62 63.88 2.91 206.70 17.46 12.02 31.07 5.51 53.79 79.18 2.72 121.80 19.98 7.71 24.648.10 27.30 57.96 2.34 231.10 36.48 12.80 37.50 17.66 29.02 96.532.53 128.60 21.75 9.10 30.00 9.56 22.77 58.063.89 126.80 50.01 12.74 53.57 18.68 29.40 69.90 2.34 79.70 74.36 27.49 9.64 45.45 21.22 87.65 2.34 294.10 42.68 12.27 79.29 15.53 83.44 99.491.96 238.30 19.71 25.22 19.29 6.64 66.24 142.862.72 109.30 18.52 12.55 19.29 9.79 26.06 61.433.11 69.40 22.93 7.56 26.79 7.65 22.09 53.06 3.50 155.70 33.30 12.08 42.86 11.36 28.05 51.53 2.72 109.30 19.83 14.54 19.29 9.45 34.56 47.55 1.77 205.50 173.34 27.81 41.79 74.03 55.71 229.80 3.50 53.20 35.15 7.91 20.36 11.14 24.90 34.39 2.53 40.00 19.08 2.29 15.00 7.88 24.15 54.29 9.17 82.80 63.88 24.85 11.79 31.50 21.68 76.537.41 222.40 31.10 38.50 142.50 8.66 128.60 133.98 5.72 164.80 49.44 27.98 126.43 13.61 37.64 76.12 8.06 194.00 41.79 31.43 213.21 13.61 45.52 127.35 5.72 310.10 56.40 37.11 138.21 16.43 59.63 154.49 8.72 1024.90 77.61 71.24 128.57 19.35 227.40 1389.39 6.77 492.80 37.86 35.61 142.50 13.39 114.13 118.98 6.56 202.30 33.28 37.67 1339.29 11.36 140.62 110.92 6.77 97.20 38.67 18.12 24.64 14.74 28.77 49.90 6.98 208.60 41.00 28.55 67.50 15.19 93.83 84.59 6.14 143.40 41.67 22.57 88.93 12.49 38.14 65.61 6.69 158.10 36.61 16.22 36.00 12.91 31.67 63.57 8.00 332.60 77.06 46.01 240.00 24.47 68.10 259.29 6.69 401.80 84.94 60.11 138.00 19.16 96.76 227.558.23 756.40 42.73 87.52 63.00 19.26 88.74 184.699.35 407.50 55.54 61.83 112.00 24.05 66.82 208.27 8.90 307.30 54.39 57.21 326.00 25.72 131.93 256.94 3.77 242.10 30.93 32.13 28.00 11.56 50.60 144.69 5.41 178.90 29.54 23.73 52.00 9.89 49.84 118.88 7.78 315.50 49.76 28.03 550.00 18.95 45.73 109.29 5.62 134.60 25.33 19.10 45.00 11.66 40.50 87.14 5.41 235.60 36.88 48.80 43.00 14.06 53.61 213.47 4.58 203.80 39.03 24.18 87.00 16.66 53.09 138.88 6.91 568.50 54.59 113.46 264.00 23.22 82.40 399.90 5.00 506.50 59.45 70.71 202.00 26.13 78.01 334.395.62 880.00 78.29 121.12 293.00 25.61 171.14 540.006.91 250.30 39.09 50.46 81.00 20.41 59.17 172.656.26 249.40 54.70 81.74 75.00 25.51 57.92 171.127.56 248.20 42.23 69.39 57.00 16.56 44.54 165.104.79 156.30 41.16 32.40 83.00 14.58 35.50 103.882.77 120.30 49.85 18.38 43.00 25.51 37.93 115.416.26 429.20 54.47 56.60 45.00 19.78 87.50 230.417.34 205.10 43.63 23.51 47.00 19.78 41.33 104.294.17 113.80 37.27 17.06 34.00 14.47 26.74 64.495.00 221.30 30.75 70.32 47.00 16.14 47.20 185.417.56 580.10 39.78 85.46 270.00 17.49 66.69 315.925.62 171.00 31.23 25.73 292.00 15.72 31.09 110.616.05 365.00 35.92 30.91 110.00 17.91 44.75 147.354.79 289.70 42.12 41.10 57.00 17.49 76.80 237.45 23.72 452.10 37.22 43.61 160.00 16.35 73.27 1635.926.47 847.60 53.17 59.00 96.00 19.05 68.82 186.534.17 310.70 40.70 42.64 58.00 14.99 115.59 177.765.00 317.50 42.46 30.96 162.00 17.81 59.94 221.944.17 357.50 38.78 43.89 14901.00 17.70 98.22 349.80 6.26 387.20 38.03 30.06 85.00 21.97 54.98 142.555.00 196.50 50.03 18.56 29.00 25.82 33.90 84.801.61 295.80 15.40 18.35 19.00 4.27 40.42 106.534.58 129.00 31.09 18.93 38.00 15.10 29.76 69.805.41 204.90 40.16 25.86 41.00 16.24 33.28 80.003.57 174.80 31.13 26.21 26.00 11.14 31.77 94.082.00 197.00 78.36 22.98 19.00 24.05 43.73 104.183.37 106.70 16.31 9.04 17.00 7.60 26.89 37.146.47 738.00 47.35 24.07 135.00 19.58 34.09 101.733.37 788.70 28.90 17.62 34.00 15.51 26.04 91.026.91 133.10 40.58 32.64 27.00 22.39 33.97 115.202.38 149.50 27.18 11.19 54.00 14.47 38.35 59.497.56 206.60 55.79 24.44 22.00 28.63 29.73 81.738.67 78.90 58.87 21.65 26.00 23.43 26.52 70.514.79 178.60 32.31 29.01 45.00 14.26 47.98 104.905.41 250.10 34.32 16.25 15.00 18.53 41.29 90.205.83 89.20 54.90 23.28 19.00 21.76 24.95 53.575.62 453.50 37.22 21.92 40.00 16.56 41.51 87.354.38 92.40 38.70 15.03 21.00 13.85 24.22 47.242.77 198.70 18.11 15.33 19.00 9.68 34.15 95.925.41 260.10 43.81 26.46 33.00 13.22 39.49 87.045.62 101.10 49.01 19.96 23.00 20.82 26.00 71.536.69 146.50 43.39 19.89 36.00 17.49 33.24 60.007.56 66.50 49.24 14.67 19.00 17.08 25.48 41.122.77 119.00 27.49 10.62 44.00 10.52 31.94 53.271.61 434.80 21.29 12.84 18.00 8.85 56.14 106.432.97 77.50 16.91 9.95 34.00 7.50 28.15 41.634.58 130.80 35.61 19.59 23.00 16.14 29.87 61.125.20 134.50 29.37 16.33 32.00 13.54 29.83 59.90 3.17 101.80 32.23 10.68 12.00 12.81 33.20 51.12 5.00 232.00 32.43 24.23 37.00 15.10 36.08 101.84 7.56 121.10 62.91 31.03 44.00 27.28 28.36 88.165.20 238.70 47.18 59.66 24.00 19.68 62.57 108.476.05 151.20 92.76 31.43 79.00 32.07 31.57 130.61 2.77 202.60 56.54 18.09 49.00 28.11 26.14 82.14 2.38 351.60 64.86 28.97 65.00 17.28 112.62 105.31 5.20 173.80 58.28 19.99 51.00 22.49 31.61 69.80 8.67 423.30 61.41 117.83 216.00 30.30 178.88 293.16 5.41 645.30 50.27 80.60 113.00 23.32 99.42 358.27 7.12 967.70 36.41 70.71 66.00 16.87 119.35 457.96 4.58 445.70 28.32 132.05 139.00 12.91 87.44 303.06 8.23 420.60 35.81 73.86 561.00 22.49 60.91 241.63 4.58 257.40 42.25 44.84 260.00 19.58 46.90 192.65 6.05 248.70 44.36 42.79 150.00 19.89 72.20 170.10 8.23 350.30 59.07 36.58 177.00 24.57 52.56 170.00 4.17 109.90 29.09 13.71 31.00 11.35 25.08 51.63 3.97 306.20 38.30 36.22 115.00 13.54 60.63 145.51 10.74 306.50 53.98 97.05 255.00 27.91 69.40 177.86 3.77 515.60 28.74 77.47 1801.00 15.10 70.18 178.57 10.27 175.90 57.88 37.50 65.00 26.97 45.34 100.415.20 417.80 35.71 47.58 801.00 16.03 94.93 204.086.47 368.20 44.22 65.70 91.00 18.33 76.88 247.04 6.47 393.00 35.82 70.17 135.00 18.53 72.96 254.80 8.90 117.50 32.54 20.51 41.00 14.47 41.45 56.33 3.37 379.10 32.13 37.81 49.00 13.74 70.37 208.37 6.69 320.30 87.90 66.99 78.00 21.90 123.60 230.11 4.17 613.40 50.34 149.26 133.00 16.60 110.20 447.83 8.23 220.50 61.48 41.96 84.00 22.40 58.37 153.274.38 229.30 32.69 60.40 64.00 13.70 62.62 204.815.20 334.30 47.05 40.37 76.00 18.40 61.03 211.47 5.20 284.30 40.47 44.73 349.00 16.00 119.46 184.61 5.41 230.10 41.65 35.71 57.00 16.90 43.91 118.70 5.00 551.10 71.75 71.23 74.00 22.30 111.62 209.50 9.58 201.00 39.11 25.26 125.00 10.70 99.35 90.07 3.17 203.80 26.57 24.29 23.00 11.90 41.69 94.34 3.77 355.20 26.25 32.87 14.00 9.60 59.22 117.87 9.13 133.70 52.99 22.10 26.00 24.80 37.73 95.48 7.34 95.60 47.85 19.51 14.00 20.80 28.52 57.68 5.62 352.60 44.57 58.98 51.00 13.30 69.95 531.454.79 556.20 50.87 143.31 92.00 19.10 180.05 388.695.20 113.70 41.85 20.73 12.00 19.00 31.87 57.273.37 240.50 28.04 22.63 261.00 11.70 35.74 92.467.34 120.30 54.19 21.90 27.00 23.00 29.63 81.013.57 514.10 42.34 47.67 13800.00 17.30 69.96 269.894.38 246.30 29.90 21.84 84.00 14.10 59.00 95.175.41 158.00 46.86 24.02 31.00 19.30 36.27 79.244.38 211.30 27.79 19.01 34.00 12.00 38.38 81.425.62 236.50 35.95 66.52 199.00 13.90 40.98 193.676.05 193.00 40.60 24.88 27.00 14.40 33.53 84.866.26 169.70 44.26 88.12 46.00 17.20 42.71 97.675.20 320.10 35.92 36.86 68.00 16.50 58.46 162.856.91 180.20 54.08 27.01 37.00 18.40 44.13 118.914.58 351.80 55.39 78.07 87.00 16.90 69.55 188.888.67 245.70 47.79 27.55 35.00 18.40 53.42 98.816.47 86.80 41.12 15.46 23.00 15.90 37.53 70.187.12 367.80 92.02 49.80 97.00 16.30 41.26 321.123.77 467.10 49.03 34.44 45.00 15.40 60.83 132.865.41 364.70 40.34 40.93 79.00 18.70 83.32 175.34 10.97 248.50 40.61 61.52 81.00 17.20 76.19 168.059.81 171.80 75.38 163.20 30.00 26.30 45.27 125.168.23 409.90 44.67 66.92 80.00 36.00 96.85 197.635.41 302.50 34.22 27.60 408.00 14.80 68.70 218.242.77 236.20 42.67 16.35 62.00 9.40 41.88 149.527.78 114.50 56.38 26.96 36.00 22.40 31.24 75.916.47 165.20 73.40 42.73 40.00 19.70 84.13 95.695.62 380.40 46.63 28.31 48.00 14.60 83.82 155.983.77 398.40 29.57 18.64 60.00 10.50 113.84 172.533.57 268.60 28.11 23.20 64.00 12.20 54.52 101.004.38 126.50 28.57 20.57 19.00 12.10 25.17 53.106.91 290.30 47.87 28.90 34.00 14.80 44.26 94.967.12 228.40 40.29 25.15 37.00 15.30 40.10 83.194.38 305.50 52.44 22.92 13.00 19.10 45.21 109.333.97 407.60 35.65 22.33 11.00 18.60 60.36 121.628.00 96.60 19.42 11.26 12.00 7.50 27.54 47.383.57 185.50 23.15 13.42 34.00 9.50 29.49 92.363.37 288.70 26.12 15.10 18.00 10.30 30.14 63.833.17 90.40 16.20 8.30 32.00 7.00 44.31 44.672.97 285.40 26.86 15.00 65.00 13.30 38.63 68.207.12 100.00 46.15 19.43 14.00 23.00 22.01 65.705.62 306.90 42.02 25.21 40.00 19.20 36.99 141.505.83 319.50 43.32 25.89 54.00 15.80 40.98 83.403.97 100.10 21.69 11.96 40.00 7.90 42.79 69.243.17 218.60 39.51 15.26 34.00 10.50 50.98 84.242.77 239.80 26.06 15.82 35.00 10.20 41.43 80.903.17 156.80 19.73 8.34 42.00 7.60 39.21 71.012.97 281.10 28.56 11.42 48.00 12.60 37.95 81.013.17 142.50 36.75 9.93 43.00 13.30 32.61 61.641.80 195.50 28.53 7.32 36.00 9.70 37.41 50.923.17 153.90 20.90 8.21 37.00 7.60 31.37 38.213.77 104.20 30.34 12.34 24.00 11.80 39.31 57.164.79 72.10 65.54 11.55 35.00 19.80 26.04 47.583.57 190.80 31.33 10.67 65.00 15.70 51.56 94.026.47 282.90 52.68 20.34 25.00 22.90 32.53 103.507.34 149.00 44.22 20.14 33.00 16.00 35.43 147.758.23 121.30 43.29 31.63 86.00 11.40 33.21 46.8610.74 479.20 96.28 29.23 98.00 25.30 80.36 112.3511.68 870.50 70.84 35.17 302.00 29.10 78.15 435.447.34 279.00 51.25 27.95 44.00 22.50 51.20 117.666.05 162.00 36.22 17.91 35.00 14.20 36.41 61.025.41 907.00 43.08 36.48 10.00 14.50 41.02 121.206.26 132.90 42.59 16.58 27.00 16.20 35.52 63.316.47 197.00 38.18 21.09 64.00 18.60 40.18 168.056.47 100.70 36.19 13.31 42.00 11.50 34.34 56.234.79 119.10 35.76 19.71 44.00 9.90 39.66 67.067.56 63.50 33.65 21.90 60.00 12.50 41.29 60.509.35 156.00 57.36 31.06 59.00 25.80 51.03 95.90]; %8种重金属元素的浓度原始数据>> bjz=[3.61303113.23512.33169]'; %8种重金属元素的背景值的均值>>[n,m]=size(data1);>> for i=1:m %求污染程度数据矩阵data2(:,i)=data1(:,i)./bjz(:,i);end>>data3=zscore(data2); %将污染程度数据矩阵中心化标准化>> R3=data3'*data3./n %求污染程度矩阵的相关系数矩阵R3 =0.9969 0.2539 0.1884 0.1592 0.0642 0.3156 0.2890 0.24610.2539 0.9969 0.3513 0.3955 0.2639 0.3283 0.6583 0.42980.1884 0.3513 0.9969 0.5299 0.1029 0.7135 0.3816 0.42300.1592 0.3955 0.5299 0.9969 0.4154 0.4930 0.5184 0.38610.0642 0.2639 0.1029 0.4154 0.9969 0.1026 0.2972 0.19520.3156 0.3283 0.7135 0.4930 0.1026 0.9969 0.3058 0.43500.2890 0.6583 0.3816 0.5184 0.2972 0.3058 0.9969 0.49210.2461 0.4298 0.4230 0.3861 0.1952 0.4350 0.4921 0.9969 >> [P,score,egenvalue,t2]=princomp(data3) %对标准化污染程度数据做主成分分析P =-0.2256 0.1861 -0.6932 0.6286 -0.0346 0.0990 -0.0130 0.1659 -0.3767 -0.2624 -0.2875 -0.3676 -0.3346 -0.4944 0.4024 0.2305 -0.3895 0.4140 0.3089 -0.0527 -0.1442 -0.1494 -0.5203 0.5146 -0.4009 -0.1162 0.3718 0.1569 -0.2034 0.6210 0.4560 0.1674 -0.2165 -0.6279 0.3028 0.5121 0.2027 -0.3585 -0.1862 -0.0236 -0.3831 0.4798 0.1932 0.1561 -0.0183 -0.3038 0.2180 -0.6490 -0.4049 -0.2930 -0.2415 -0.2828 -0.2074 0.3297 -0.5166 -0.4396 -0.3704 0.0349 -0.1254 -0.2750 0.8604 0.0909 0.1005 0.1079score =0.5456 0.4760 -0.2385 0.9238 0.0347 0.0562 -0.0448 -0.00680.7236 0.3890 0.1517 0.4457 0.0965 0.0977 -0.0533 -0.04400.1029 -0.6786 -0.3148 -0.6068 -0.1762 0.0955 0.2073 0.26030.5289 -0.0888 0.0282 0.7029 0.1653 -0.1864 0.0361 0.1829-2.2377 -0.8590 -0.8366 -1.0018 0.5103 0.4119 -0.4269 -0.6101 -7.0283 -2.3626 -4.0263 -1.6355 -1.1503 1.6389 -1.4879 -2.1198 -0.3681 0.5809 -0.5586 0.6635 -0.1787 0.0705 -0.4055 0.3925 -15.5620 -6.6945 5.7248 3.5181 -1.3891 6.1650 2.6337 1.0367 -6.0371 -6.9258 1.2082 2.9402 1.8860 -4.2464 -1.0592 -0.2348 -0.0015 0.7581 -0.4581 0.8739 -0.1659 -0.2192 0.1137 0.09280.6954 0.1341 0.0674 0.3664 0.0591 0.0268 -0.0202 0.1885-0.2674 0.3478 -0.8345 0.7230 0.0449 0.1003 0.0674 -0.06300.1822 0.5162 0.2579 0.2336 -0.1541 -0.0185 -0.3874 -0.1035-2.1906 0.7026 0.6746 -1.3487 0.8725 0.3109 -1.5612 1.6705 -1.5324 -0.2124 -0.3571 -0.9523 0.0396 -0.0076 -0.2709 -0.0697 -6.0460 -2.4069 -3.9522 -2.5619 -2.0637 1.4629 -2.7735 -2.3424 -1.3424 -0.2013 -0.2190 -0.5147 -0.1666 0.4430 -0.0608 0.0551 -0.6321 0.1785 -0.4933 0.2850 0.0627 0.1584 0.1581 0.0416 -1.2540 0.6515 -0.1718 -0.1308 -0.0092 0.0480 -0.8613 0.6978 -7.5796 3.7551 1.3460 -1.7726 -0.6913 -0.9056 -5.5039 3.41100.0944 -0.2025 -0.2070 -0.2764 0.0309 0.3363 -0.4892 -0.0266 -17.4212 8.9703 5.9221 -0.0944 -1.4722 -1.2894 0.8421 0.1725 -2.1046 1.4921 -0.2319 0.4977 0.0202 -0.1274 -0.6136 0.04220.6397 -0.3411 0.4288 -0.5322 0.1214 0.3348 -0.3583 0.12191.4171 0.0243 0.4828 0.1015 0.1464 0.3042 -0.1825 0.2053 -1.7146 -0.1366 -0.0385 -0.4983 -0.6268 0.1689 0.4550 0.2763 -0.0550 -0.1538 -0.0622 -0.2113 -0.1635 -0.0413 0.1809 -0.0872 0.3403 -0.3241 0.1514 -0.6483 0.1454 0.0456 0.0582 -0.0361 -2.2528 0.8758 -3.4344 3.6015 -0.4367 -0.2157 -0.1284 0.2580 -4.7160 1.0707 -3.4565 0.9714 2.5440 0.0534 0.4370 0.1119 -2.7709 -0.0334 -1.8314 -0.2652 -0.0324 0.0437 -0.0380 -0.7412 -0.3140 -0.0641 0.5062 -0.8364 -0.3898 -0.3550 -0.1278 0.7118 -0.7990 -0.1320 -0.4332 -0.3535 -0.2162 -0.3231 0.4275 0.1141 -1.6491 -0.6296 -0.6280 -1.1407 -0.6168 -0.6762 0.3947 0.1354 -1.7686 -0.1825 -0.0992 -1.1970 -0.6814 -0.8994 0.3968 -0.0186 -3.9091 0.7415 -0.2673 -2.9500 6.3803 0.2921 0.2126 0.7461 -1.4647 -0.3831 -0.5316 -1.0731 -0.3343 -0.5569 0.1834 0.2274 -0.9190 -0.3578 -0.1369 -1.0095 -0.1176 -0.1736 0.1963 -0.2639 -0.6199 -0.5094 -0.0971 -0.8925 -0.1719 -0.0425 -0.3181 -0.0942 -2.1994 -0.7106 -0.8728 -1.0604 -0.8158 -0.4901 0.6209 0.1088 -1.6930 0.1943 -2.2379 2.4508 -0.2430 -0.4713 -0.3154 0.7789 -1.1941 0.0654 -0.0643 0.2298 -0.5284 0.8791 0.1192 -0.0071 -1.7783 -0.0857 -0.4393 -0.8688 0.1825 -0.1170 0.2485 -0.2336 -1.3269 -0.3879 -0.1961 -1.0676 -0.1696 -0.1690 0.3273 -0.0182 -1.7262 -0.4834 -0.0588 -1.0235 -0.0390 0.1464 0.7781 0.2450 -0.3146 -0.4307 -0.4538 -0.6836 -0.4914 -0.5546 0.5160 0.2878 -0.3077 -0.3195 -0.0877 -0.8476 -0.4049 -0.5604 0.3973 0.3028 0.2697 0.5142 0.2370 0.2496 -0.0752 -0.1768 0.1170 -0.3981 -2.0172 0.7524 1.0532 -0.7316 -0.9341 -1.0987 -1.6186 1.9530 -0.1381 0.5167 -0.2506 0.3730 0.6859 0.0785 0.1171 -0.0865 0.7240 0.3319 0.3071 0.3205 0.0841 0.0607 -0.0694 -0.0735 -0.0150 -0.3424 -0.1356 -0.4977 0.0635 0.2120 -0.0350 0.0194 0.0576 -0.2000 -0.0237 -0.4499 0.1273 0.2745 -0.2710 0.2023 -0.3202 -0.4893 0.6425 -0.4004 -0.0446 1.0314 0.7140 0.1861 0.4307 -0.3085 0.2150 -0.6014 0.0067 0.0449 -0.0530 0.1206 -0.2662 -0.7819 0.0386 -1.1966 -0.2686 0.1909 -0.4906 -0.1128 0.2713 -0.2298 0.2108 -0.5493 -0.1878 -0.1247 0.1894 0.0785 -0.2246 -0.7164 -0.1448 -0.8876 -0.4672 0.4291 -0.5872 -0.7035 0.6481 -0.0998 0.7073 -0.4511 0.0103 0.1054 0.1706 0.0970 0.5783 -0.7979 -0.0027 -0.9507 -0.4412 -0.2953 0.2737 0.6414 -4.9523 1.3451 -0.8451 -2.9211 8.8247 0.5078 1.3004 -0.6180 1.0347 -0.1646 0.3122 -0.1042 0.0719 0.4338 -0.2773 -0.1365 0.8726 -0.4966 0.3722 -0.6675 -0.0569 0.2092 -0.1495 0.1663 0.8251 -0.4207 0.4898 -0.6795 -0.0298 0.0953 -0.0850 0.2530-0.1942 -0.9026 -0.1482 -1.4141 -0.7682 -0.8284 0.6967 0.7609 0.0322 -0.8372 -0.0282 -1.1085 -0.2348 0.4498 -0.5239 -0.0294 0.3535 -0.5388 0.1385 -0.8978 -0.4007 -0.3706 0.2416 0.4858 0.5465 0.2398 0.0786 0.3970 -0.1003 0.1225 0.2374 0.14640.5999 -0.4428 0.0847 -0.6828 0.0925 -0.0251 0.0617 0.33341.0220 0.1884 0.4185 0.1384 0.1096 0.1586 -0.0265 -0.0356 0.7568 -0.6009 0.1811 -0.7472 -0.1007 0.0866 -0.0003 0.1035 0.5791 0.7669 -0.1772 1.0316 0.0466 0.0941 -0.0653 -0.0231 0.5777 -0.2940 0.3178 -0.4222 -0.1304 0.2144 0.0321 -0.0681 0.9969 0.0506 0.5431 -0.1119 0.0623 0.1465 -0.0594 -0.04600.4834 -0.2277 0.2977 -0.5526 -0.0828 -0.0171 0.0098 -0.09351.8398 -0.2509 0.7183 -0.1471 0.2235 0.3812 -0.1144 0.26030.2548 0.4254 -0.5970 0.7625 -0.1701 -0.0364 0.0853 0.10581.8317 -0.4542 0.8235 -0.4658 0.1887 0.3240 -0.0319 0.2644 0.3311 -0.6401 0.2281 -1.0978 -0.2421 -0.2917 0.2434 0.15270.5054 0.7159 0.8483 0.0558 0.0455 -0.2427 -0.0024 -0.58781.0213 0.3558 0.1137 0.5801 0.1244 0.2419 -0.0707 0.06690.1123 0.9352 -0.7452 1.6501 -0.0884 0.4054 -0.0489 0.06351.1602 0.2701 0.0336 0.6235 0.1197 0.3106 -0.1185 0.2258 -2.5152 1.0417 -6.3439 4.2111 -1.0196 -0.1554 0.5575 1.6064 0.5339 -0.4580 0.0262 -0.6347 -0.3144 -0.2299 0.1989 0.28090.8768 -0.5859 0.3732 -0.7010 -0.2629 -0.0286 0.2501 0.53371.4739 -0.5605 0.6379 -0.6457 0.1290 0.2485 -0.0275 0.2146 1.1412 0.4411 -0.0234 0.8324 0.1481 0.3742 -0.2152 0.1941 1.1723 -0.3646 0.4770 -0.4669 0.0490 0.2327 -0.1095 0.1148 -1.2112 -0.6208 -1.0304 -1.0941 -1.0874 -1.2110 0.8126 -0.0459 0.7708 0.4939 0.1799 0.4678 0.1187 0.0905 -0.0748 -0.0563 0.7194 0.5240 -0.1438 0.8025 0.0400 0.2259 -0.1583 0.0648 0.7944 -0.9189 0.5332 0.3728 0.2052 -0.1612 -0.0980 0.2948 0.9803 0.2176 0.3573 0.1695 0.1169 0.1536 -0.0615 -0.0981 -1.5418 -1.3814 -1.7142 -2.0008 -2.1581 -3.1459 2.5861 1.58680.2234 0.2447 -0.2142 0.3473 -0.1840 0.0135 0.1959 -0.03351.0684 -0.0200 0.2915 0.0147 0.0063 0.1445 -0.0589 0.1836 0.5102 -0.4695 0.2141 -0.8049 -0.1532 -0.1505 0.1388 0.11860.1351 -0.3252 0.6881 -0.6096 -0.2194 0.2954 0.4798 0.03551.4382 -0.0785 0.3928 0.1568 0.2213 0.3376 -0.0624 0.1678 0.9228 0.5060 -0.1865 0.9060 0.0832 0.2852 -0.1856 0.2015 0.7335 0.1135 -0.0839 0.2394 -0.0191 0.1308 -0.0519 0.03200.9324 -0.6877 0.3173 -0.9078 -0.2174 -0.0534 0.0507 0.14601.1803 -0.4970 0.4240 -0.5047 0.0370 0.1793 -0.0235 0.23220.8836 0.0599 0.0175 0.2708 -0.0123 0.2535 -0.0508 0.11051.7497 -0.2216 0.8038 -0.2423 0.2205 0.2957 -0.0487 0.1209 0.4705 0.0381 -0.1928 0.3225 -0.0839 0.2425 0.1211 0.1778 0.9697 0.1825 0.3466 0.1776 0.0190 0.0359 0.0621 -0.08941.0486 0.0656 0.0792 0.6619 0.1062 0.4412 0.0459 0.28020.3823 1.2290 0.8225 0.5786 0.0397 -0.3092 -0.0381 -0.57351.4829 -0.1092 0.2502 0.1891 0.1353 0.3403 -0.0917 0.3202 1.4459 -0.0130 0.6431 0.0268 0.2163 0.3198 -0.0399 0.08020.8508 0.1939 0.3332 0.1067 0.0396 0.0881 -0.0200 -0.08441.1861 0.0885 0.4469 0.1916 0.0722 0.2072 0.0544 0.1862 1.3512 -0.0505 0.6217 -0.1298 0.1299 0.1695 -0.1094 0.1650 1.3321 0.4301 1.0120 0.0658 0.3255 0.1041 -0.0609 -0.2046 1.4784 -0.2019 0.3393 -0.0076 0.1701 0.3084 -0.1081 0.3645 1.0978 0.1706 0.1035 0.3954 0.0722 0.1516 -0.0253 0.2451 1.4059 -0.1147 0.1648 0.1935 0.1880 0.3788 -0.1325 0.25140.3092 1.1165 0.7832 0.4217 0.0644 -0.3575 -0.0249 -0.48011.1689 0.0514 0.4286 0.0063 0.1077 0.0795 0.0210 0.11380.7967 0.7055 0.3276 0.6135 0.1147 0.0563 -0.0939 -0.17531.3591 -0.6709 0.3044 -0.5580 0.0136 0.3660 -0.1928 0.2431 1.6505 -0.2852 0.6425 -0.2593 0.1926 0.2667 -0.0500 0.21670.9654 0.1082 0.8399 -0.4113 0.0687 -0.2751 0.2406 -0.19281.6196 -0.2004 0.7395 -0.2598 0.1962 0.1714 0.0319 0.1721 0.9338 0.4434 0.7083 0.1116 0.1093 -0.0636 -0.0446 -0.1938 -0.0224 1.8951 1.8098 0.3005 0.1527 -0.8642 0.4199 -1.80240.4598 -0.3654 0.4884 -0.8496 -0.2460 -0.0137 -0.3065 -0.42171.1199 -0.7696 0.4580 -0.9040 0.0627 0.3781 -0.1954 0.0908 1.6095 -0.1915 0.6996 -0.2041 0.2183 0.2580 0.0036 0.0999 1.7576 -0.1751 0.6513 -0.0680 0.2704 0.3653 -0.1255 0.2795 1.3236 -0.0558 0.5546 -0.1005 0.0772 0.1055 -0.0197 0.1749 1.5568 -0.2528 0.6675 -0.2453 0.1433 0.3254 -0.0999 0.0547 -2.28193.4783 2.5596 0.0509 -0.0632 -1.9845 0.2218 -3.1007 1.5508 0.0924 0.6973 0.0827 0.1982 0.2972 -0.2033 0.1161 1.8592 -0.1918 0.7847 -0.1554 0.3280 0.4086 -0.1762 0.1513 0.0733 1.5738 -0.0808 1.5086 0.0907 -0.2093 0.1524 -0.6012 0.0548 -0.6737 -0.9257 -0.0157 -0.2853 0.9373 -0.9108 -0.2132 0.8116 0.1771 0.1455 0.3367 0.0141 0.1669 -0.1403 0.2165 0.4910 0.1651 -0.4949 0.7257 0.0634 0.2553 -0.1077 0.2680 0.1334 0.0532 -0.0667 -0.0370 -0.1238 -0.0554 -0.0499 0.0735 -4.3058 -1.2052 -2.7072 -2.4707 1.1227 -0.0943 -0.1468 -0.1098 -0.4295 -0.6749 -0.9341 -0.4303 -0.6773 0.0528 -0.2342 -0.1111-0.1933 -1.0926 -0.4721 0.2073 -0.2135 0.6730 -1.1701 -0.5717 1.0010 0.4069 -0.0233 0.7211 0.0926 0.2576 -0.0931 0.1129 0.1729 -0.0758 -0.4896 0.2159 -0.2704 0.4691 -0.5391 -0.3240 0.9282 0.1422 0.0027 0.4359 0.0325 0.2666 -0.1663 0.2209 0.9517 0.2118 -0.1487 0.5521 0.0370 0.1945 -0.0411 0.2519 -0.7175 0.5932 -0.4110 0.4186 -0.0085 -0.2246 -0.0397 -0.1848 -0.7932 0.0804 -0.3808 -0.2108 -0.3324 -0.0177 -0.3394 -0.0270 -1.2166 -0.4314 -1.2681 -0.3538 -0.9096 -0.6028 0.7595 0.1899。
聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
多元统计分析中的降维方法在四川省社会福利中的应用由于计算机的发展和日益广泛的使用,多元分析方法也很快地应用到社会学、农业、医学、经济学、地质、气象等各个领域。
在国外,从自然科学到社会科学的许多方面,都已证实了多元分析方法是一种很有用的数据处理方法;在我国,多元分析对于农业、气象、国家标准和误差分析等许多方面的研究工作都取得了很大的成绩,引起了广泛的注意。
在许多领域的研究中,为了全面系统地分析问题,对研究对象进行综合评价,我们常常需要考虑衡量问题的多个指标(即变量),由于变量之间可能存在着相关性,如果采用一元统计方法,把多个变量分开,一次分析一个变量,就会丢失大量的信息,研究结果也会偏差很大。
因此需要采用多元统计分析的方法,同时对所有变量的观测数据进行分析。
多元统计分析就是一种同时研究多个变量之间的相互关系,经过对变量的综合处理,充分提取变量之间的信息,进行综合分析和评价的统计方法。
多元统计分析法主要包括降维、分类、回归及其他统计思想。
一.多元统计分析方法中降维的方法1.概述多元统计分析方法是同时对多个变量的观察数据做综合处理和分析。
在不损失有价值信息的情况下,简化观测数据或数据结构,尽可能简单地将被研究对象描述出来,使得对复杂现象的解释变得更容易些。
同时,采用多元统计分析中的聚类分析或判别分析可以对变量或样品进行分类与分组。
根据所测量的特征和分类规则将一些“类似的”对象或变量分组。
多元统计分析也可以研究变量间依赖性。
即对变量间关系的本质进行研究。
是否所有的变量都相互独立?还是一个变量或多个变量依赖于其他变量?它们又是怎样依赖的?通过观测变量数据的散点图,我们可以建立多元回归统计模型,确定出变量之间具体的依赖关系,进而可以根据某些变量的观测值预测另一个或另一些变量的值对事物现象的发展作预测。
最后我们需要构造假设,并对所建立的以多元总体参数形式陈述的多种特殊统计假设进行检验。
在多元统计分析方法中数据简化或结构简化,实质上就是数学中的降维方法。