聚类分析数学建模
- 格式:pptx
- 大小:1.53 MB
- 文档页数:77
聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
银行风险管理中的数学建模方法研究随着金融市场的不断发展,银行风险管理的重要性也日益凸显。
银行作为金融机构,其经营活动必然会面临各种各样的风险,而科学合理的风险管理方法也就变得至关重要了。
在银行风险管理中,数学建模方法已经成为了一种常用的手段,它可以帮助银行有效地识别、评估和控制各种风险,提高银行的稳健性和盈利能力。
本文将从以下几个方面,对银行风险管理中的数学建模方法进行综述和研究。
一、银行风险分类及数学模型选择首先,我们需要了解银行的常见风险类型,根据国际惯例,银行的风险主要有信用风险、市场风险、操作风险和流动性风险等。
针对不同的风险类型,银行需要选择不同的数学模型。
1. 信用风险模型信用风险是指因借款人或客户未能按照约定的还款计划进行偿付,导致银行遭受的损失,因此,信用风险模型的本质就是对借款人和客户的违约概率进行预测和度量。
常见的信用风险模型包括基于Logistic回归、神经网络、决策树等的评级模型和预测模型,其中评级模型常用于客户的信用评估和分类,预测模型则用于预测未来违约率。
2. 市场风险模型市场风险是指由于市场利率、汇率、股票价格等外部市场因素的波动导致的银行投资组合损失。
市场风险模型的选择主要取决于银行的投资策略和投资组合的构成,例如对股票、债券、外汇等不同资产类别,采用VaR、Expected Shortfall等风险度量指标,或者对固定收益产品采用债券定价模型等进行风险度量。
3. 操作风险模型操作风险是指由于银行内部人员、系统、流程等因素的错误或意外而导致银行损失。
常用的操作风险模型包括LDA、AMA等模型,其中LDA模型主要是基于统计学的方法,包括分布假设、估计方程等,而AMA模型则是更加模型化的金融工程方法,它可以对操作风险事件的时序、复杂程度等多个方面进行度量和分析。
4. 流动性风险模型流动性风险是指银行面临的资金流动性风险,它主要包括流动性溢价、资产负债管理、清算、融资成本等方面。
现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
数学建模数据处理方法数学建模是解决实际问题的重要方法,而数据处理是数学建模中不可或缺的一环。
数据处理方法的好坏直接影响到模型的准确性和可靠性,因此需要对数据进行准确、全面的处理和分析。
下面将从数据采集、数据清洗、数据分析三个方面介绍数学建模中的数据处理方法。
一、数据采集数据采集是数学建模中首先需要完成的工作。
数据采集工作的质量对最终结果的精确度和代表性具有至关重要的影响。
数据采集必须具有相应数据的覆盖范围,数据即时性、真实性和准确性。
采集数据的方法主要有以下几种:1.问卷调查法:通过问卷调查的方式获得数据,是一个经典的数据采集方法。
问卷设计要考虑问题的准确性、问卷的结构和便于回答等因素,其缺点在于有误差和回答方式有主观性。
2.实地调查法:通过实地调查的方式获得数据。
实地调查法拥有远高于其它数据采集方法的数据真实性和准确性,但是它也较为费时费力走,不易操作。
3.网络调查法:通过网络调查的方式获得数据,是应用最广的一种调查方法。
以网络搜索引擎为代表的网络工具可提供大量的调查对象。
在采用网络调查时要考虑到样本的代表性,避免过多的重复样本、无效样本。
此外,由于网络调查法易遭受假冒调查等欺骗行为,结果不能完全符合事实情况。
二、数据清洗在数据采集后,需要对数据进行清洗,以确保数据的准确性和完整性。
数据清洗是数据处理过程中的一项重要工作,它能大大提高数据的质量,保证数据的准确性、真实性和完整性。
数据清洗的过程中主要包括以下几个方面的工作:1.清洗脏数据:包括数据中的重复、缺失、无效和异常值等。
其中缺失值和异常值是数据清洗的重点,缺失值需要根据数据具体情况处理,可采用去除、填充、插值等方式,异常值的处理就是通过人工或自动识别的方式找出这些数据并去除或修正。
2.去除重复数据:在数据采集时出现的重复数据需要进行去重处理,在处理过程中需要注意保持数据的完整性和准确性。
3.清洗无效数据:清洗无效数据是指对数据进行筛选、排序、分组等操作,以得到有意义的数据,提高数据的价值和质量。
数学建模在气象预报中的应用气象预报一直以来都是人们关注的焦点之一,而数学建模在气象预报中的应用则是提高预报准确性的重要途径之一。
数学建模通过分析气象数据和模拟气象系统,能够帮助我们更好地理解和预测气象现象。
本文将探讨数学建模在气象预报中的应用,并介绍相关的模型和方法。
一、数据预处理在气象预报中,数据的准确性和完整性对于数学建模至关重要。
通常,气象数据会包括温度、湿度、气压、风速等多个指标,这些指标的收集和准确性将直接影响最后的预报结果。
因此,数据预处理是数学建模的第一步,从地面观测站、卫星数据和雷达资料中获取的数据需要进行质量控制、插值和平滑处理。
同时,还需要考虑数据之间的关联性,例如降雨和温度之间的关系,以及海洋表面温度和气候变化的关系等。
二、气象模型数学建模过程中需要选择合适的气象模型来描述大气系统的运动和变化。
常用的气象模型包括数值天气预报模型、环流模式和季节预测模型等。
1. 数值天气预报模型数值天气预报模型是基于物理方程组和热力动力学原理建立的,用于模拟大气运动和变化的数学模型。
它通过对大气中的质量、动量、能量进行离散化求解,可以提供天气预报的数值结果。
目前常用的数值天气预报模型有欧洲中期天气预报中心开发的ECMWF模型、美国天气预报中心的GFS模型等。
2. 环流模式环流模式是用来模拟大气环流系统以及它们之间的相互作用和变化的数学模型。
环流模式可以帮助我们理解全球范围内的大气运动规律和气候变化趋势。
例如,通过环流模式可以研究厄尔尼诺现象和南方涛动等气候现象的形成和演化规律。
3. 季节预测模型季节预测模型是一种用来预测长期气候趋势和季节性气候变化的数学模型。
该模型结合了大气-海洋相互作用、太阳辐射和陆地过程等因素,可以对未来几个月到几年的气候变化进行预测。
季节预测模型对于农业、水资源管理和防灾减灾等领域有着重要的应用价值。
三、数据分析和预测数学建模在气象预报中的应用还包括数据分析和预测。
通过对历史气象数据的统计分析和建模,可以得出一些规律和趋势,进而预测未来的气象变化。
1。
1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意.4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4) 重心法(5)类平均法(6)可变类平均法(7) 可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
多元统计分析中的降维方法在四川省社会福利中的应用由于计算机的发展和日益广泛的使用,多元分析方法也很快地应用到社会学、农业、医学、经济学、地质、气象等各个领域。
在国外,从自然科学到社会科学的许多方面,都已证实了多元分析方法是一种很有用的数据处理方法;在我国,多元分析对于农业、气象、国家标准和误差分析等许多方面的研究工作都取得了很大的成绩,引起了广泛的注意。
在许多领域的研究中,为了全面系统地分析问题,对研究对象进行综合评价,我们常常需要考虑衡量问题的多个指标(即变量),由于变量之间可能存在着相关性,如果采用一元统计方法,把多个变量分开,一次分析一个变量,就会丢失大量的信息,研究结果也会偏差很大。
因此需要采用多元统计分析的方法,同时对所有变量的观测数据进行分析。
多元统计分析就是一种同时研究多个变量之间的相互关系,经过对变量的综合处理,充分提取变量之间的信息,进行综合分析和评价的统计方法。
多元统计分析法主要包括降维、分类、回归及其他统计思想。
一.多元统计分析方法中降维的方法1.概述多元统计分析方法是同时对多个变量的观察数据做综合处理和分析。
在不损失有价值信息的情况下,简化观测数据或数据结构,尽可能简单地将被研究对象描述出来,使得对复杂现象的解释变得更容易些。
同时,采用多元统计分析中的聚类分析或判别分析可以对变量或样品进行分类与分组。
根据所测量的特征和分类规则将一些“类似的”对象或变量分组。
多元统计分析也可以研究变量间依赖性。
即对变量间关系的本质进行研究。
是否所有的变量都相互独立?还是一个变量或多个变量依赖于其他变量?它们又是怎样依赖的?通过观测变量数据的散点图,我们可以建立多元回归统计模型,确定出变量之间具体的依赖关系,进而可以根据某些变量的观测值预测另一个或另一些变量的值对事物现象的发展作预测。
最后我们需要构造假设,并对所建立的以多元总体参数形式陈述的多种特殊统计假设进行检验。
在多元统计分析方法中数据简化或结构简化,实质上就是数学中的降维方法。
如何使用数学模型解决实际生活中的问题数学模型是一种抽象的表示方法,可以用来解决实际生活中的各种问题。
在日常生活中,我们常常遇到一些复杂的情境,如果能够运用数学模型来解决,将会事半功倍。
本文将探讨如何使用数学模型解决实际生活中的问题。
第一步,问题拆解。
将一个大问题拆解成多个小问题,然后使用数学模型逐个解决这些小问题。
例如,我们假设有一个大型超市需要优化货架摆放的位置,以提高商品销售额。
首先,我们可以将这个问题拆解为以下几个小问题:商品受众群体分析、产品陈列方式、销售数据分析等。
通过拆解问题,我们可以对每个小问题进行具体分析和解决。
第二步,数学建模。
对于每个小问题,我们需要选择合适的数学模型进行建模。
例如,针对商品受众群体分析,我们可以使用统计学中的聚类分析方法,将顾客按照购买行为和偏好进行分类,然后根据不同类别的顾客需求和购买力来优化商品陈列位置。
而销售数据分析可以使用时间序列分析方法,对历史销售数据进行分析,预测未来销售趋势,并做出相应的货架摆放调整。
通过数学建模,我们可以将复杂的实际问题转化为具体的数学模型来解决。
第三步,模型求解。
在得到数学模型后,我们需要运用数学方法对模型进行求解。
具体求解方法因模型而异,可以使用线性规划、最优化等数学方法。
例如,对于货架摆放问题,我们可以使用线性规划方法,在考虑各个商品的销售额、陈列面积和顾客流量等因素的基础上,得到最优的货架摆放方案。
求解过程中,我们需要根据实际数据进行计算和优化,以得到最合理、最优的解决方案。
第四步,结果评估。
求解完数学模型后,我们需要对结果进行评估,看是否满足实际需求。
评估方法可以是对比实际数据和模型预测结果的差异,或是通过试验验证模型的有效性。
如果结果不尽如人意,我们可以再次调整数学模型或参数,进行优化求解,直到得到满意的结果。
综上所述,使用数学模型解决实际生活中的问题是一种科学、高效的方法。
通过问题拆解、数学建模、模型求解和结果评估,我们可以将复杂的实际问题转化为具体的数学问题,并通过数学方法求解,找到最佳解决方案。
11.1抗生素显著性检验问题摘要在已知抗生素效果情况服从正态分布,且方差相同条件下。
通过用SPSS13.0软件编写程序,进行单因素方差分析。
检验五种抗生素之间是否存在明显差异。
关键词:抗生素方差分析显著性检验一问题重述抗生素注入人体后会与人体血浆蛋白质结合,以致减少了药效。
现在将常用的抗生素注入到牛的体内,得到抗生素与血浆蛋白质结合的百分比。
在总体服从正态分布,且方差相同的条件下分析五种抗生素效果是否存在显著性差异。
二问题分析题目显示各类抗生素效果情况服从正态分布,为了进一步说明抗生素使用效果的差异,需要检查不同抗生素是否有显著性差异,即对数据进行显著性检验。
首先,应该提出抗生素之间没有显著性差异的假设。
然后通过SPSS13.0版本软件进行单因素方差检验[1]。
验证假设是否成立。
三模型假设四符号说明五模型建立与求解题目显示各类抗生素与血浆蛋白质结合的百分比情况属于正态总体,要对各类抗生素是否存在显著性差异。
应用软件SPSS13.0进行单因素方差检验。
其检验步骤如下:Step1. 提出假设:H:各类抗生素之间没有显著性差异;H:各类抗生素之间有显著性差异。
1α0.05。
Step2. 选定显著性水平=Step3. 用软件SPSS13.0进行单因素方差检验用SPSS13.0编写程序得到问题的解:即不同抗生素效果明显不同。
(各抗生素之间具体分析见附录一)六模型评价与改进参考文献[1]薛薇 ,《SPSS统计分析方法及应用》,出版地:电子工业出版社,2009。
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录附录一PSS13.0编写程序得到问题的解:11.2化肥与小麦种子的不同对小麦产量的影响问题摘要化肥与小麦的品种的差异将影响小麦的产量,进而影响农民的生活水平。
本文建立数学模型,就化肥的不同,小麦品种的不同这两种因素定量分析化肥与小麦品种对小麦实际产量的影响。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
一、模糊评价模糊评价法是应用模糊理论和模糊关系合成的原理,通过多个因素对被评价事物隶属等级状况进行综合性评价的一种方法。
运用模糊评价法,通过多因素 或多指标,既对被评价事物的变化区间作出某种划分,又对事物属于各评价等级 的程度作出分析,从而更深入和客观地对被评价事物进行描述。
特点:①模糊评价法的结果是一个向量,而不是一个数值,即被评价事物的状况是通过被评价事物的等级隶属度来表示。
②模糊评价法可以是一种多层的评价,即可以先对被评价事物的某一层面进行模糊评价,再将各层面的模糊评价结果进行模糊合成,得出总的模糊评价结果。
③模糊评价法具有指标或因素的自然可综合性。
由于模糊评价法只需确定各指标的等级隶属度,既可用于主观指标,又可用于客观指标,以此而无需专门对指标进行无量纲处理。
1.1模糊评价的应用①人事考核中的应用, ②单位员工的年终评定,③昆山公安信息化建设效绩的评估(下载文档), ④我国商业银行内部控制评价体系研究(下载文档), ⑤石化行业业绩评价(下载文档)等。
1.2一级模糊综合评判模型的建立步骤①确定因素集及评语集确定被评价对象的因素集U ,{}12=,,,n U u u u L ,评语集{}12,,,m V v v v =L ; ②构造模糊关系矩阵R ,进行单因素评判。
用ij r 表示U 中的因素i u 对应于V 中等级j v 的隶属关系,则有111212122212=,01m m ij n n nm r r r r r r R r r r r ⎛⎫⎪ ⎪≤≤ ⎪⎪⎝⎭L LM M M M L③确定各因素的权重用i a 表示第i 个因素的权重,11ni i a ==∑,则评价因素权向量A 为()12,,,n A a a a =L 。
④综合评判由模糊关系矩阵R 得到一个模糊变换为:()(),R T F U F V →则评判的综合结果为()11121212221212,,,m m n n n nm r r r r rr B A R a a a r r r ⎛⎫⎪ ⎪== ⎪⎪⎝⎭L Lo L o M M M M L 。