聚类分析数学建模
- 格式:pptx
- 大小:1.53 MB
- 文档页数:77
聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。
银行风险管理中的数学建模方法研究随着金融市场的不断发展,银行风险管理的重要性也日益凸显。
银行作为金融机构,其经营活动必然会面临各种各样的风险,而科学合理的风险管理方法也就变得至关重要了。
在银行风险管理中,数学建模方法已经成为了一种常用的手段,它可以帮助银行有效地识别、评估和控制各种风险,提高银行的稳健性和盈利能力。
本文将从以下几个方面,对银行风险管理中的数学建模方法进行综述和研究。
一、银行风险分类及数学模型选择首先,我们需要了解银行的常见风险类型,根据国际惯例,银行的风险主要有信用风险、市场风险、操作风险和流动性风险等。
针对不同的风险类型,银行需要选择不同的数学模型。
1. 信用风险模型信用风险是指因借款人或客户未能按照约定的还款计划进行偿付,导致银行遭受的损失,因此,信用风险模型的本质就是对借款人和客户的违约概率进行预测和度量。
常见的信用风险模型包括基于Logistic回归、神经网络、决策树等的评级模型和预测模型,其中评级模型常用于客户的信用评估和分类,预测模型则用于预测未来违约率。
2. 市场风险模型市场风险是指由于市场利率、汇率、股票价格等外部市场因素的波动导致的银行投资组合损失。
市场风险模型的选择主要取决于银行的投资策略和投资组合的构成,例如对股票、债券、外汇等不同资产类别,采用VaR、Expected Shortfall等风险度量指标,或者对固定收益产品采用债券定价模型等进行风险度量。
3. 操作风险模型操作风险是指由于银行内部人员、系统、流程等因素的错误或意外而导致银行损失。
常用的操作风险模型包括LDA、AMA等模型,其中LDA模型主要是基于统计学的方法,包括分布假设、估计方程等,而AMA模型则是更加模型化的金融工程方法,它可以对操作风险事件的时序、复杂程度等多个方面进行度量和分析。
4. 流动性风险模型流动性风险是指银行面临的资金流动性风险,它主要包括流动性溢价、资产负债管理、清算、融资成本等方面。
现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
数学建模数据处理方法数学建模是解决实际问题的重要方法,而数据处理是数学建模中不可或缺的一环。
数据处理方法的好坏直接影响到模型的准确性和可靠性,因此需要对数据进行准确、全面的处理和分析。
下面将从数据采集、数据清洗、数据分析三个方面介绍数学建模中的数据处理方法。
一、数据采集数据采集是数学建模中首先需要完成的工作。
数据采集工作的质量对最终结果的精确度和代表性具有至关重要的影响。
数据采集必须具有相应数据的覆盖范围,数据即时性、真实性和准确性。
采集数据的方法主要有以下几种:1.问卷调查法:通过问卷调查的方式获得数据,是一个经典的数据采集方法。
问卷设计要考虑问题的准确性、问卷的结构和便于回答等因素,其缺点在于有误差和回答方式有主观性。
2.实地调查法:通过实地调查的方式获得数据。
实地调查法拥有远高于其它数据采集方法的数据真实性和准确性,但是它也较为费时费力走,不易操作。
3.网络调查法:通过网络调查的方式获得数据,是应用最广的一种调查方法。
以网络搜索引擎为代表的网络工具可提供大量的调查对象。
在采用网络调查时要考虑到样本的代表性,避免过多的重复样本、无效样本。
此外,由于网络调查法易遭受假冒调查等欺骗行为,结果不能完全符合事实情况。
二、数据清洗在数据采集后,需要对数据进行清洗,以确保数据的准确性和完整性。
数据清洗是数据处理过程中的一项重要工作,它能大大提高数据的质量,保证数据的准确性、真实性和完整性。
数据清洗的过程中主要包括以下几个方面的工作:1.清洗脏数据:包括数据中的重复、缺失、无效和异常值等。
其中缺失值和异常值是数据清洗的重点,缺失值需要根据数据具体情况处理,可采用去除、填充、插值等方式,异常值的处理就是通过人工或自动识别的方式找出这些数据并去除或修正。
2.去除重复数据:在数据采集时出现的重复数据需要进行去重处理,在处理过程中需要注意保持数据的完整性和准确性。
3.清洗无效数据:清洗无效数据是指对数据进行筛选、排序、分组等操作,以得到有意义的数据,提高数据的价值和质量。
数学建模在气象预报中的应用气象预报一直以来都是人们关注的焦点之一,而数学建模在气象预报中的应用则是提高预报准确性的重要途径之一。
数学建模通过分析气象数据和模拟气象系统,能够帮助我们更好地理解和预测气象现象。
本文将探讨数学建模在气象预报中的应用,并介绍相关的模型和方法。
一、数据预处理在气象预报中,数据的准确性和完整性对于数学建模至关重要。
通常,气象数据会包括温度、湿度、气压、风速等多个指标,这些指标的收集和准确性将直接影响最后的预报结果。
因此,数据预处理是数学建模的第一步,从地面观测站、卫星数据和雷达资料中获取的数据需要进行质量控制、插值和平滑处理。
同时,还需要考虑数据之间的关联性,例如降雨和温度之间的关系,以及海洋表面温度和气候变化的关系等。
二、气象模型数学建模过程中需要选择合适的气象模型来描述大气系统的运动和变化。
常用的气象模型包括数值天气预报模型、环流模式和季节预测模型等。
1. 数值天气预报模型数值天气预报模型是基于物理方程组和热力动力学原理建立的,用于模拟大气运动和变化的数学模型。
它通过对大气中的质量、动量、能量进行离散化求解,可以提供天气预报的数值结果。
目前常用的数值天气预报模型有欧洲中期天气预报中心开发的ECMWF模型、美国天气预报中心的GFS模型等。
2. 环流模式环流模式是用来模拟大气环流系统以及它们之间的相互作用和变化的数学模型。
环流模式可以帮助我们理解全球范围内的大气运动规律和气候变化趋势。
例如,通过环流模式可以研究厄尔尼诺现象和南方涛动等气候现象的形成和演化规律。
3. 季节预测模型季节预测模型是一种用来预测长期气候趋势和季节性气候变化的数学模型。
该模型结合了大气-海洋相互作用、太阳辐射和陆地过程等因素,可以对未来几个月到几年的气候变化进行预测。
季节预测模型对于农业、水资源管理和防灾减灾等领域有着重要的应用价值。
三、数据分析和预测数学建模在气象预报中的应用还包括数据分析和预测。
通过对历史气象数据的统计分析和建模,可以得出一些规律和趋势,进而预测未来的气象变化。
1。
1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意.4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4) 重心法(5)类平均法(6)可变类平均法(7) 可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
多元统计分析中的降维方法在四川省社会福利中的应用由于计算机的发展和日益广泛的使用,多元分析方法也很快地应用到社会学、农业、医学、经济学、地质、气象等各个领域。
在国外,从自然科学到社会科学的许多方面,都已证实了多元分析方法是一种很有用的数据处理方法;在我国,多元分析对于农业、气象、国家标准和误差分析等许多方面的研究工作都取得了很大的成绩,引起了广泛的注意。
在许多领域的研究中,为了全面系统地分析问题,对研究对象进行综合评价,我们常常需要考虑衡量问题的多个指标(即变量),由于变量之间可能存在着相关性,如果采用一元统计方法,把多个变量分开,一次分析一个变量,就会丢失大量的信息,研究结果也会偏差很大。
因此需要采用多元统计分析的方法,同时对所有变量的观测数据进行分析。
多元统计分析就是一种同时研究多个变量之间的相互关系,经过对变量的综合处理,充分提取变量之间的信息,进行综合分析和评价的统计方法。
多元统计分析法主要包括降维、分类、回归及其他统计思想。
一.多元统计分析方法中降维的方法1.概述多元统计分析方法是同时对多个变量的观察数据做综合处理和分析。
在不损失有价值信息的情况下,简化观测数据或数据结构,尽可能简单地将被研究对象描述出来,使得对复杂现象的解释变得更容易些。
同时,采用多元统计分析中的聚类分析或判别分析可以对变量或样品进行分类与分组。
根据所测量的特征和分类规则将一些“类似的”对象或变量分组。
多元统计分析也可以研究变量间依赖性。
即对变量间关系的本质进行研究。
是否所有的变量都相互独立?还是一个变量或多个变量依赖于其他变量?它们又是怎样依赖的?通过观测变量数据的散点图,我们可以建立多元回归统计模型,确定出变量之间具体的依赖关系,进而可以根据某些变量的观测值预测另一个或另一些变量的值对事物现象的发展作预测。
最后我们需要构造假设,并对所建立的以多元总体参数形式陈述的多种特殊统计假设进行检验。
在多元统计分析方法中数据简化或结构简化,实质上就是数学中的降维方法。