数学建模聚类分析
- 格式:ppt
- 大小:1.22 MB
- 文档页数:55
聚类分析在数学建模中的应用聚类分析是一种无监督学习方法,主要用于发现数据中的潜在分组或模式。
它在数学建模中起着重要的作用,能够帮助研究人员在未知的数据集中发现隐藏的结构和关联。
本文将介绍聚类分析在数学建模中的应用,并详细讨论其几个典型的应用场景。
1.生物医学研究中的应用:聚类分析在生物医学研究中被广泛应用于基因表达数据、蛋白质相互作用网络、疾病分类等方面。
例如,基因表达数据通常具有高维度和复杂性,聚类分析可以将不同的基因分组,找到相关基因集合,从而帮助研究人员发现与特定疾病相关的生物过程和信号通路。
在药物研发过程中,聚类分析还可以帮助研究人员识别潜在药物靶点和候选靶向药物。
2.社交网络分析中的应用:聚类分析在社交网络分析中发挥着重要作用。
通过对社交网络数据进行聚类分析,可以将社交网络中的用户划分为不同的群体或社区,并发现隐藏的社交群体结构。
这可以帮助研究人员了解社交网络用户的行为、兴趣和关系,并为灵活的社交网络设计和推荐系统提供支持。
3.图像分析中的应用:聚类分析在图像分析中也有广泛的应用。
通过对图像数据进行聚类分析,可以将图像分组为具有相似特征的集合,从而实现图像分类、图像和图像压缩等任务。
例如,对于大规模的图像库,聚类分析可以帮助研究人员将图像分组为具有相似主题或特征的集合,从而提高图像的效率和精度。
4.金融风险管理中的应用:聚类分析在金融风险管理中也有着重要的应用。
通过对风险因素进行聚类分析,可以帮助金融机构识别风险因素的潜在结构和关联,并评估不同风险因素之间的相互作用。
这对于制定有效的风险管理策略和规避潜在风险非常重要。
例如,聚类分析可以帮助银行发现具有相似信用风险的客户群体,并采取相应的措施来降低风险。
5.消费者行为分析中的应用:聚类分析在消费者行为分析中也有重要的应用。
通过对消费者数据进行聚类分析,可以将消费者划分为不同的行为类型或偏好群体,并发现不同群体之间的行为模式和趋势。
这可以帮助企业了解消费者的需求和喜好,并制定相应的市场营销策略。
聚类模型聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某中最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离量度样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j 个样本的明考斯基距离为p mk p jk ik ij x x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“城市街道”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: (1) 最短距离; (2) 最长距离; (3) 质心距离; (4) 平均距离;(5) 平方距离.根据我们讲述的多弹头导弹要求,这里以最短距离为例加以简要分析.其它几种距离的分析可见参考文献错误!未找到引用源。
聚类的数模题目
(原创实用版)
目录
一、引言
二、聚类的定义和分类
三、数模题目的意义
四、数模题目的解决方法
五、总结
正文
一、引言
聚类分析是一种常见的数据挖掘方法,它通过分析数据集中的特征,将相似的数据点划分到同一类别中,从而实现对数据的有效组织和分析。
在数模题目中,聚类问题更是经常被涉及,因此研究聚类的数模题目具有重要的实际意义。
二、聚类的定义和分类
聚类分析是一种无监督学习方法,其主要目的是通过分析数据集中的特征,找出数据点之间的内在联系,将相似的数据点划分到同一类别中。
根据划分标准的不同,聚类方法可以分为基于距离的聚类、基于密度的聚类和基于网格的聚类等。
三、数模题目的意义
数模题目是指在数学建模竞赛中,以实际问题为背景,通过建立数学模型来解决实际问题的题目。
在数模题目中,聚类问题经常被涉及,如对网络社区的发现、对客户群体的分类等。
解决聚类的数模题目,对于提高数据分析能力,提升实际问题解决能力具有重要意义。
四、数模题目的解决方法
解决聚类的数模题目,一般可以分为以下几个步骤:
1.数据预处理:对原始数据进行清洗和转换,以便于后续的聚类分析。
2.特征选择:根据实际问题,选择合适的特征进行聚类分析。
3.聚类分析:根据选定的特征和聚类方法,对数据进行聚类分析。
4.结果评估:对聚类结果进行评估,以确定聚类效果的好坏。
5.结果优化:根据评估结果,对聚类方法进行优化,以提高聚类效果。
五、总结
聚类的数模题目是数学建模竞赛中的一类重要题目,它通过对实际问题的建模和分析,提升我们的数据分析能力和实际问题解决能力。
数学建模数据分类数学建模是一种应用数学的方法,通过数学模型来描述和解决实际问题。
其中一个重要的应用领域就是数据分类。
数据分类是指将一组数据按照某种特征或属性进行划分和分类的过程。
在现实生活中,数据分类有着广泛的应用,如社交网络中的用户推荐、商品推荐、医学诊断等。
数据分类的目标是将数据集划分为多个互相独立且类似的子集。
为了实现这一目标,数学建模提供了多种方法和技术。
下面将介绍一些常见的数据分类方法。
1. 聚类分析:聚类分析是一种无监督学习的方法,通过将相似的数据点聚集在一起,将数据集划分为多个类别或簇。
常见的聚类算法包括K均值聚类、层次聚类和密度聚类等。
聚类分析可以帮助我们发现数据中的潜在模式和结构。
2. 决策树:决策树是一种基于树状结构的分类模型,通过一系列的决策规则将数据集划分为不同的类别。
决策树的每个节点表示一个特征,每个分支表示一个决策规则,每个叶节点表示一个类别。
通过对数据集进行递归划分,决策树可以实现对数据的分类。
3. 支持向量机:支持向量机是一种二分类模型,通过在高维空间中找到一个最优超平面,将不同类别的数据分开。
支持向量机可以处理非线性分类问题,并且具有较好的泛化能力和鲁棒性。
4. 神经网络:神经网络是一种模拟人脑神经系统的计算模型,通过多个神经元之间的连接和传递来实现对数据的分类。
神经网络可以处理复杂的非线性关系,并且具有较强的学习能力和适应性。
5. 贝叶斯分类:贝叶斯分类是一种基于贝叶斯定理的概率分类方法,通过计算后验概率来进行分类。
贝叶斯分类可以处理不完全的数据和不确定性,并且具有较好的鲁棒性和可解释性。
除了上述方法,还有许多其他的数据分类方法,如遗传算法、随机森林、朴素贝叶斯等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高分类的准确性和效果。
在实际应用中,数据分类往往需要考虑多个因素,如特征选择、模型训练、模型评估等。
特征选择是指从原始数据中选择和提取最相关的特征,以便更好地进行分类。
数学建模服务点设置人数均衡聚类分析数学建模之聚类分析1.聚类分析聚类分析所研究的样本或者变量之间存在不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些将样本或者变量进行分类。
系统聚类分析:将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成一个新类,依次类推。
最终可以按照需要来决定分多少类,每类有多少样本(指标)。
2.系统聚类分析的步骤1计算n个样本两两之间的距离。
2构成n个类,每类只包含一个样品3合并距离最近的两类为一个新类4计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离的最小值),若类的个数等于1,转5,否则转35画聚类图6 决定类的个数和类。
3.系统聚类分析主要介绍系统聚类分析方法。
系统聚类分析法是聚类分析中应用最为广泛的一种方法。
它的基本原理是:首先将一定数量的样品或者指标各自看成一类,然后根据样品(或者指标)的亲疏程度,将亲疏程度最高的两类进行合并。
然后考虑合并后的类与其他类之间的亲疏程度,再进行合并。
重复这一过程,直至将所有的样品(或者指标)合并为一类。
系统聚类分析用到的函数:4.聚类分析研究对于样品或者指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。
聚类分析把分类对象按照一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。
在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。
职能是建立一种能按照样品或者变量的相似程度进行分类的方法。
5.聚类分析种类聚类分析有两种:一种是对样品的分类,称为Q型,另一种是对变量(指标)的分类,称为R型。
R型聚类分析的主要作用:1.不但可以了解个别变量之间的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。
2.根据变量的分类结果以及它们之间的关系,可以选择主要变量进行Q型聚类分析或回归分析。
(回归系数R^2为选择标准)Q型聚类分析的主要作用:1.可以综合利用多个变量的信息对样本进行分析。
随机抽取管理学院10名学生,对其4门课程的考试成绩进行统计,如下表所示,这4门课程分别为多元统计分析1X ,运筹学2X ,经济学3X ,管理学4X . 使用主成分分析方法对学生成绩进行分析.>> x1=[77 63 75 55 31 67 70 66 70 57]; >> x2=[82 78 73 72 55 81 81 81 68 73]; >> x3=[67 80 71 63 60 82 78 73 72 55]; >> x4=[81 81 81 68 73 67 80 71 63 60];>> data=[x1;x2;x3;x4]'; %输入观测值数据矩阵 >> [n,m]=size(data);>> for i=1:m %将数据矩阵中心标准化sddata(:,i)=(data(:,i)-mean(data(:,i)))./std(data(:,i),1); end>> [P,score,egenvalue,t2]=princomp(sddata) %做主成分分析 P =-0.5511 0.3268 -0.3624 0.6769 -0.5588 0.3358 -0.2089 -0.7289 -0.5110 -0.1193 0.8460 0.0944 -0.3505 -0.8753 -0.3307 -0.0398score =-1.3489 -0.2567 -1.2840 -0.0315 -1.2458 -0.9740 0.5341 -0.2698 -0.8704 -0.7467 -0.5863 0.7336 1.1642 0.3096 -0.2225 -0.2707 3.3634 -1.5690 0.3950 -0.0572 -1.1054 0.8480 1.1534 -0.2345 -1.5954 -0.5212 0.0958 -0.1867 -0.6992 0.4872 0.1005 -0.4105 0.4738 0.9799 0.5768 1.03061.8637 1.4430 -0.7628 -0.3031egenvalue = 2.7502 0.9334 0.5275 0.2334 t2 =3.8620 2.4333 3.8297 1.0034 7.0609 3.9724 1.3834 1.1732 6.29124.9906>> for k=1:mgxl(k)=sum(egenvalue(1:k))/sum(egenvalue); end>> gxl %输出累计贡献率 gxl =0.6188 0.8288 0.9475 1.0000>> plot(score(:,1),score(:,2),'r+') %画出第一第二主成分的散点图 >> gname第一主成分43211X X X X Y 0.3505-0.5110-0.5588--0.5511=,所有科目考试成绩的系数均为负,且差异不大,故1Y 可解释为学生的综合学习成绩,该主成分得分越小(散点图中的位置越靠左),综合成绩越好.第二主成分43212X X X X Y 0.8753-0.1193-0.33580.3268+=,数学科目考试成绩的系数均为正,专业科目考试成绩的系数均为负,故2Y 可解释为学生的数学科目与专业科目学习成绩的差异,该主成分得分绝对值越大则差异越大,由散点图可以看出,10号学生的数学科目明显优于其专业科目成绩,而5号学生的数学科目明显差于其专业科目成绩.>> Y1=score(:,1);ZF=(sum(data'))'; %提取第一主成分得分,求每个学生的总分 >>for k=1:norder(k,1)=find(Y1==min(Y1));Y1(order(k,1))=inf; %按第一主成分得分由高到低排序order(k,2)=find(ZF==max(ZF));ZF(order(k,2))=-inf; %按总分由高到低排序 end >> orderorder =7 7 1 1 2 2 6 3 3 6 8 8 9 9 4 4 10 10 5 5两种排序方式下3号学生和6号学生的排序结果相反,原因在于43211X X X X Y 0.3505-0.5110-0.5588--0.5511可见,这四个科目成绩的重要性是依次递减的,3号学生的总分虽略高于6号学生,但他的最高分出现在重要性最低的第4科.>> R=sddata'*sddata./n %求标准化数据的样本相关矩阵R =1.0000 0.7867 0.5322 0.28900.7867 1.0000 0.5749 0.27680.5322 0.5749 1.0000 0.39750.2890 0.2768 0.3975 1.0000建模2011A主成分分析-聚类分析:data1=[7.84 153.80 44.31 20.56 266.00 18.20 35.38 72.35 5.93 146.20 45.05 22.51 86.00 17.20 36.18 94.594.90 439.20 29.07 64.56 109.00 10.60 74.32 218.376.56 223.90 40.08 25.17 950.00 15.40 32.28 117.356.35 525.20 59.35 117.53 800.00 20.20 169.96 726.02 14.08 1092.90 67.96 308.61 1040.00 28.20 434.80 966.738.94 269.80 95.83 44.81 121.00 17.80 62.91 166.739.62 1066.20 285.58 2528.48 13500.00 41.70 381.64 1417.867.41 1123.90 88.17 151.64 16000.00 25.80 172.36 926.848.72 267.10 65.56 29.65 63.00 21.70 36.94 100.415.93 201.40 45.19 24.90 259.00 14.60 35.88 102.659.17 287.00 43.94 45.77 168.00 19.70 62.74 223.165.72 193.70 80.35 26.57 111.00 19.80 57.64 89.084.49 359.50 258.15 123.27 77.00 12.90 106.47 853.985.51 516.40 91.97 89.04 189.00 19.80 121.72 494.80 11.45 1044.50 94.78 136.97 202.00 22.30 472.48 602.046.14 445.40 82.69 167.39 144.00 18.40 111.24 389.807.84 347.90 57.65 97.14 213.00 19.60 70.82 307.247.41 345.70 159.45 71.03 85.00 18.10 89.34 380.928.50 614.00 744.46 130.55 156.00 32.80 228.64 1013.475.51 257.20 54.64 29.01 104.00 13.20 87.68 223.279.84 1213.50 920.84 1364.85 115.00 142.50 181.48 1818.479.39 325.80 172.29 104.89 82.00 31.50 90.90 429.293.30 212.10 50.13 38.62 139.00 10.60 66.98 186.224.09 90.50 35.02 11.82 16.00 10.40 29.09 46.846.14 583.40 95.25 233.70 155.00 21.10 97.47 311.025.31 366.40 42.34 64.65 188.00 17.40 67.11 182.653.69 323.90 35.14 34.66 50.00 13.90 65.48 253.16 21.87 424.50 73.40 59.72 1520.00 27.80 83.70 175.71 18.38 630.00 96.68 114.81 645.00 34.80 130.36 1626.02 10.53 635.30 64.03 101.35 190.00 28.30 162.64 615.103.50 463.40 112.19 72.93 118.00 14.10 60.60 193.376.35 532.00 57.51 83.76 191.00 19.50 73.46 297.14 5.51 778.70 74.66 92.48 330.00 19.70 110.20 351.63 4.49 754.80 99.88 97.92 243.00 24.90 100.79 323.37 3.50 396.30 138.37 58.97 170.00 24.20 91.76 2893.47 5.51 687.80 85.52 72.85 201.00 19.00 103.20 403.27 4.29 526.00 55.31 81.43 93.00 19.90 100.65 369.80 4.29 449.10 67.22 51.64 315.00 15.70 106.97 294.69 6.56 852.70 72.59 158.67 311.00 21.20 124.24 377.14 16.58 459.00 94.79 47.17 1900.00 19.90 71.32 215.10 7.41 337.30 77.27 248.85 90.00 20.10 99.58 210.00 5.93 568.10 75.14 118.16 135.00 23.80 111.54 572.96 4.69 599.00 69.05 122.18 121.00 19.80 102.72 427.044.90 635.50 68.42 227.76 176.00 19.50 96.33 538.985.31 600.70 44.65 45.10 51.00 15.50 65.87 186.334.29 567.60 60.25 48.67 46.00 16.10 63.74 208.065.51 228.50 49.27 30.85 62.00 22.90 45.93 102.04 4.69 568.60 306.02 70.41 900.00 16.80 79.67 196.737.20 214.70 50.33 40.16 156.00 20.80 47.76 403.98 5.31 151.90 47.24 24.44 140.00 17.30 37.49 92.55 4.90 343.30 42.01 58.81 80.00 13.80 79.07 275.82 4.90 293.90 60.29 51.03 53.00 12.60 75.93 278.37 3.89 312.90 33.79 277.82 55.00 14.00 68.24 295.61 3.69 315.90 45.43 34.05 55.00 12.60 62.84 196.33 3.11 416.30 57.88 47.64 167.00 11.90 116.19 242.04 3.89 374.00 45.17 50.19 35.00 15.00 58.11 157.35 3.89 344.30 35.29 47.87 100.00 15.10 133.72 141.022.91 252.90 45.98 71.54 32.14 14.40 42.99 146.223.30 503.40 38.74 30.46 36.43 7.20 53.73 102.864.90 303.80 56.02 65.86 63.21 40.05 90.69 3760.82 4.09 127.00 27.58 23.99 30.00 11.93 57.47 85.61 2.91 265.00 35.66 29.39 24.64 9.23 60.54 122.962.72 278.90 43.43 32.61 64.29 9.90 53.40 135.713.11 751.20 53.11 53.80 27.86 10.46 60.27 155.00 3.30 361.30 47.54 52.28 25.71 9.11 113.46 218.27 3.30 488.00 51.18 34.55 37.50 10.80 54.62 125.926.14 227.00 42.15 67.04 49.29 16.31 34.28 82.963.69 347.40 37.76 19.97 26.79 10.01 54.41 221.224.49 136.00 36.56 23.07 21.43 14.96 34.19 78.98 3.11 327.10 25.98 23.73 25.71 9.79 63.81 138.06 8.06 113.10 52.40 20.81 65.36 19.69 29.56 62.24 3.69 270.50 33.12 57.85 25.71 13.50 62.04 118.16 3.69 160.30 38.29 26.08 25.71 14.29 40.13 82.86 3.50 305.50 39.50 30.86 31.07 14.74 61.89 148.88 2.72 70.90 19.45 9.12 15.007.09 22.73 32.861.77 119.80 15.32 13.34 8.57 6.19 26.31 47.762.53 468.80 37.04 32.03 45.00 12.15 65.25 178.983.69 150.70 59.61 19.00 34.29 24.98 38.47 89.08 6.14 100.30 37.49 20.23 34.29 14.85 29.29 61.94 10.99 109.80 56.07 69.06 58.93 20.70 38.87 63.27 6.35 91.80 36.12 16.91 36.43 12.49 27.01 47.76 30.13 743.90 49.03 26.18 27.86 17.66 72.76 182.04 3.89 416.80 37.04 23.78 22.50 11.48 54.45 105.00 2.91 369.80 36.34 52.48 22.507.99 42.02 84.08 1.96 194.00 18.08 16.17 26.79 6.98 40.27 94.69 6.98 50.10 41.02 14.25 17.14 13.39 26.57 40.92 2.91 198.80 28.21 19.24 13.93 9.56 47.81 94.80 5.93 886.60 42.69 28.12 43.93 21.15 94.64 163.27 5.93 128.90 47.52 16.31 12.86 17.66 33.51 91.73 7.41 114.30 48.34 21.45 35.36 16.54 35.83 63.88 4.29 232.90 29.17 40.02 1714.29 9.79 38.65 95.414.69 132.80 36.11 17.28 20.36 15.53 37.03 82.765.72 1619.80 43.48 15.50 20.36 15.41 30.99 57.556.77 282.50 41.97 52.80 27.86 18.34 49.10 104.90 4.49 180.60 37.23 18.70 27.86 11.93 36.45 63.98 3.11 386.60 35.93 26.38 24.64 12.26 60.00 157.24 2.91 345.00 40.46 152.21 23.57 15.53 58.05 170.71 4.29 95.60 22.49 17.15 85.71 10.13 27.97 67.24 7.63 87.10 45.83 14.83 30.00 14.63 29.25 48.78 5.93 203.00 35.97 16.88 15.00 14.51 45.83 89.49 2.34 353.00 24.53 12.70 11.79 9.00 58.80 89.08 2.91 233.20 24.92 21.62 85.71 8.33 45.20 100.10 5.72 174.30 33.83 29.45 20.36 13.05 42.10 71.43 2.34 87.60 18.46 9.73 13.93 8.89 24.43 43.37 6.56 245.60 36.73 61.30 55.71 14.18 47.24 114.29 4.69 167.90 33.15 18.96 60.00 15.98 33.46 55.71 6.35 111.40 28.82 59.17 206.79 11.70 28.02 61.53 5.10 94.60 77.92 20.34 23.57 28.69 25.92 58.47 4.69 111.60 24.57 12.09 31.07 8.55 27.12 43.883.50 85.50 26.33 24.88 36.43 11.36 26.77 64.084.69 169.50 39.11 22.51 25.71 15.98 39.53 82.96 4.49 138.00 34.52 35.54 50.36 12.60 25.45 52.45 3.30 131.40 35.97 11.29 43.93 11.03 30.06 61.94 2.91 41.00 41.77 12.50 17.14 17.10 19.68 78.374.09 129.70 26.83 10.12 40.71 7.76 28.84 68.165.72 148.00 36.73 14.21 52.50 12.60 27.15 57.86 4.90 108.10 22.729.40 35.36 8.89 32.39 69.39 4.90 132.50 79.52 18.67 42.86 27.68 28.30 92.245.93 88.80 52.41 15.30 10.71 19.91 28.62 63.88 2.91 206.70 17.46 12.02 31.07 5.51 53.79 79.18 2.72 121.80 19.98 7.71 24.648.10 27.30 57.96 2.34 231.10 36.48 12.80 37.50 17.66 29.02 96.532.53 128.60 21.75 9.10 30.00 9.56 22.77 58.063.89 126.80 50.01 12.74 53.57 18.68 29.40 69.90 2.34 79.70 74.36 27.49 9.64 45.45 21.22 87.65 2.34 294.10 42.68 12.27 79.29 15.53 83.44 99.491.96 238.30 19.71 25.22 19.29 6.64 66.24 142.862.72 109.30 18.52 12.55 19.29 9.79 26.06 61.433.11 69.40 22.93 7.56 26.79 7.65 22.09 53.06 3.50 155.70 33.30 12.08 42.86 11.36 28.05 51.53 2.72 109.30 19.83 14.54 19.29 9.45 34.56 47.55 1.77 205.50 173.34 27.81 41.79 74.03 55.71 229.80 3.50 53.20 35.15 7.91 20.36 11.14 24.90 34.39 2.53 40.00 19.08 2.29 15.00 7.88 24.15 54.29 9.17 82.80 63.88 24.85 11.79 31.50 21.68 76.537.41 222.40 31.10 38.50 142.50 8.66 128.60 133.98 5.72 164.80 49.44 27.98 126.43 13.61 37.64 76.12 8.06 194.00 41.79 31.43 213.21 13.61 45.52 127.35 5.72 310.10 56.40 37.11 138.21 16.43 59.63 154.49 8.72 1024.90 77.61 71.24 128.57 19.35 227.40 1389.39 6.77 492.80 37.86 35.61 142.50 13.39 114.13 118.98 6.56 202.30 33.28 37.67 1339.29 11.36 140.62 110.92 6.77 97.20 38.67 18.12 24.64 14.74 28.77 49.90 6.98 208.60 41.00 28.55 67.50 15.19 93.83 84.59 6.14 143.40 41.67 22.57 88.93 12.49 38.14 65.61 6.69 158.10 36.61 16.22 36.00 12.91 31.67 63.57 8.00 332.60 77.06 46.01 240.00 24.47 68.10 259.29 6.69 401.80 84.94 60.11 138.00 19.16 96.76 227.558.23 756.40 42.73 87.52 63.00 19.26 88.74 184.699.35 407.50 55.54 61.83 112.00 24.05 66.82 208.27 8.90 307.30 54.39 57.21 326.00 25.72 131.93 256.94 3.77 242.10 30.93 32.13 28.00 11.56 50.60 144.69 5.41 178.90 29.54 23.73 52.00 9.89 49.84 118.88 7.78 315.50 49.76 28.03 550.00 18.95 45.73 109.29 5.62 134.60 25.33 19.10 45.00 11.66 40.50 87.14 5.41 235.60 36.88 48.80 43.00 14.06 53.61 213.47 4.58 203.80 39.03 24.18 87.00 16.66 53.09 138.88 6.91 568.50 54.59 113.46 264.00 23.22 82.40 399.90 5.00 506.50 59.45 70.71 202.00 26.13 78.01 334.395.62 880.00 78.29 121.12 293.00 25.61 171.14 540.006.91 250.30 39.09 50.46 81.00 20.41 59.17 172.656.26 249.40 54.70 81.74 75.00 25.51 57.92 171.127.56 248.20 42.23 69.39 57.00 16.56 44.54 165.104.79 156.30 41.16 32.40 83.00 14.58 35.50 103.882.77 120.30 49.85 18.38 43.00 25.51 37.93 115.416.26 429.20 54.47 56.60 45.00 19.78 87.50 230.417.34 205.10 43.63 23.51 47.00 19.78 41.33 104.294.17 113.80 37.27 17.06 34.00 14.47 26.74 64.495.00 221.30 30.75 70.32 47.00 16.14 47.20 185.417.56 580.10 39.78 85.46 270.00 17.49 66.69 315.925.62 171.00 31.23 25.73 292.00 15.72 31.09 110.616.05 365.00 35.92 30.91 110.00 17.91 44.75 147.354.79 289.70 42.12 41.10 57.00 17.49 76.80 237.45 23.72 452.10 37.22 43.61 160.00 16.35 73.27 1635.926.47 847.60 53.17 59.00 96.00 19.05 68.82 186.534.17 310.70 40.70 42.64 58.00 14.99 115.59 177.765.00 317.50 42.46 30.96 162.00 17.81 59.94 221.944.17 357.50 38.78 43.89 14901.00 17.70 98.22 349.80 6.26 387.20 38.03 30.06 85.00 21.97 54.98 142.555.00 196.50 50.03 18.56 29.00 25.82 33.90 84.801.61 295.80 15.40 18.35 19.00 4.27 40.42 106.534.58 129.00 31.09 18.93 38.00 15.10 29.76 69.805.41 204.90 40.16 25.86 41.00 16.24 33.28 80.003.57 174.80 31.13 26.21 26.00 11.14 31.77 94.082.00 197.00 78.36 22.98 19.00 24.05 43.73 104.183.37 106.70 16.31 9.04 17.00 7.60 26.89 37.146.47 738.00 47.35 24.07 135.00 19.58 34.09 101.733.37 788.70 28.90 17.62 34.00 15.51 26.04 91.026.91 133.10 40.58 32.64 27.00 22.39 33.97 115.202.38 149.50 27.18 11.19 54.00 14.47 38.35 59.497.56 206.60 55.79 24.44 22.00 28.63 29.73 81.738.67 78.90 58.87 21.65 26.00 23.43 26.52 70.514.79 178.60 32.31 29.01 45.00 14.26 47.98 104.905.41 250.10 34.32 16.25 15.00 18.53 41.29 90.205.83 89.20 54.90 23.28 19.00 21.76 24.95 53.575.62 453.50 37.22 21.92 40.00 16.56 41.51 87.354.38 92.40 38.70 15.03 21.00 13.85 24.22 47.242.77 198.70 18.11 15.33 19.00 9.68 34.15 95.925.41 260.10 43.81 26.46 33.00 13.22 39.49 87.045.62 101.10 49.01 19.96 23.00 20.82 26.00 71.536.69 146.50 43.39 19.89 36.00 17.49 33.24 60.007.56 66.50 49.24 14.67 19.00 17.08 25.48 41.122.77 119.00 27.49 10.62 44.00 10.52 31.94 53.271.61 434.80 21.29 12.84 18.00 8.85 56.14 106.432.97 77.50 16.91 9.95 34.00 7.50 28.15 41.634.58 130.80 35.61 19.59 23.00 16.14 29.87 61.125.20 134.50 29.37 16.33 32.00 13.54 29.83 59.90 3.17 101.80 32.23 10.68 12.00 12.81 33.20 51.12 5.00 232.00 32.43 24.23 37.00 15.10 36.08 101.84 7.56 121.10 62.91 31.03 44.00 27.28 28.36 88.165.20 238.70 47.18 59.66 24.00 19.68 62.57 108.476.05 151.20 92.76 31.43 79.00 32.07 31.57 130.61 2.77 202.60 56.54 18.09 49.00 28.11 26.14 82.14 2.38 351.60 64.86 28.97 65.00 17.28 112.62 105.31 5.20 173.80 58.28 19.99 51.00 22.49 31.61 69.80 8.67 423.30 61.41 117.83 216.00 30.30 178.88 293.16 5.41 645.30 50.27 80.60 113.00 23.32 99.42 358.27 7.12 967.70 36.41 70.71 66.00 16.87 119.35 457.96 4.58 445.70 28.32 132.05 139.00 12.91 87.44 303.06 8.23 420.60 35.81 73.86 561.00 22.49 60.91 241.63 4.58 257.40 42.25 44.84 260.00 19.58 46.90 192.65 6.05 248.70 44.36 42.79 150.00 19.89 72.20 170.10 8.23 350.30 59.07 36.58 177.00 24.57 52.56 170.00 4.17 109.90 29.09 13.71 31.00 11.35 25.08 51.63 3.97 306.20 38.30 36.22 115.00 13.54 60.63 145.51 10.74 306.50 53.98 97.05 255.00 27.91 69.40 177.86 3.77 515.60 28.74 77.47 1801.00 15.10 70.18 178.57 10.27 175.90 57.88 37.50 65.00 26.97 45.34 100.415.20 417.80 35.71 47.58 801.00 16.03 94.93 204.086.47 368.20 44.22 65.70 91.00 18.33 76.88 247.04 6.47 393.00 35.82 70.17 135.00 18.53 72.96 254.80 8.90 117.50 32.54 20.51 41.00 14.47 41.45 56.33 3.37 379.10 32.13 37.81 49.00 13.74 70.37 208.37 6.69 320.30 87.90 66.99 78.00 21.90 123.60 230.11 4.17 613.40 50.34 149.26 133.00 16.60 110.20 447.83 8.23 220.50 61.48 41.96 84.00 22.40 58.37 153.274.38 229.30 32.69 60.40 64.00 13.70 62.62 204.815.20 334.30 47.05 40.37 76.00 18.40 61.03 211.47 5.20 284.30 40.47 44.73 349.00 16.00 119.46 184.61 5.41 230.10 41.65 35.71 57.00 16.90 43.91 118.70 5.00 551.10 71.75 71.23 74.00 22.30 111.62 209.50 9.58 201.00 39.11 25.26 125.00 10.70 99.35 90.07 3.17 203.80 26.57 24.29 23.00 11.90 41.69 94.34 3.77 355.20 26.25 32.87 14.00 9.60 59.22 117.87 9.13 133.70 52.99 22.10 26.00 24.80 37.73 95.48 7.34 95.60 47.85 19.51 14.00 20.80 28.52 57.68 5.62 352.60 44.57 58.98 51.00 13.30 69.95 531.454.79 556.20 50.87 143.31 92.00 19.10 180.05 388.695.20 113.70 41.85 20.73 12.00 19.00 31.87 57.273.37 240.50 28.04 22.63 261.00 11.70 35.74 92.467.34 120.30 54.19 21.90 27.00 23.00 29.63 81.013.57 514.10 42.34 47.67 13800.00 17.30 69.96 269.894.38 246.30 29.90 21.84 84.00 14.10 59.00 95.175.41 158.00 46.86 24.02 31.00 19.30 36.27 79.244.38 211.30 27.79 19.01 34.00 12.00 38.38 81.425.62 236.50 35.95 66.52 199.00 13.90 40.98 193.676.05 193.00 40.60 24.88 27.00 14.40 33.53 84.866.26 169.70 44.26 88.12 46.00 17.20 42.71 97.675.20 320.10 35.92 36.86 68.00 16.50 58.46 162.856.91 180.20 54.08 27.01 37.00 18.40 44.13 118.914.58 351.80 55.39 78.07 87.00 16.90 69.55 188.888.67 245.70 47.79 27.55 35.00 18.40 53.42 98.816.47 86.80 41.12 15.46 23.00 15.90 37.53 70.187.12 367.80 92.02 49.80 97.00 16.30 41.26 321.123.77 467.10 49.03 34.44 45.00 15.40 60.83 132.865.41 364.70 40.34 40.93 79.00 18.70 83.32 175.34 10.97 248.50 40.61 61.52 81.00 17.20 76.19 168.059.81 171.80 75.38 163.20 30.00 26.30 45.27 125.168.23 409.90 44.67 66.92 80.00 36.00 96.85 197.635.41 302.50 34.22 27.60 408.00 14.80 68.70 218.242.77 236.20 42.67 16.35 62.00 9.40 41.88 149.527.78 114.50 56.38 26.96 36.00 22.40 31.24 75.916.47 165.20 73.40 42.73 40.00 19.70 84.13 95.695.62 380.40 46.63 28.31 48.00 14.60 83.82 155.983.77 398.40 29.57 18.64 60.00 10.50 113.84 172.533.57 268.60 28.11 23.20 64.00 12.20 54.52 101.004.38 126.50 28.57 20.57 19.00 12.10 25.17 53.106.91 290.30 47.87 28.90 34.00 14.80 44.26 94.967.12 228.40 40.29 25.15 37.00 15.30 40.10 83.194.38 305.50 52.44 22.92 13.00 19.10 45.21 109.333.97 407.60 35.65 22.33 11.00 18.60 60.36 121.628.00 96.60 19.42 11.26 12.00 7.50 27.54 47.383.57 185.50 23.15 13.42 34.00 9.50 29.49 92.363.37 288.70 26.12 15.10 18.00 10.30 30.14 63.833.17 90.40 16.20 8.30 32.00 7.00 44.31 44.672.97 285.40 26.86 15.00 65.00 13.30 38.63 68.207.12 100.00 46.15 19.43 14.00 23.00 22.01 65.705.62 306.90 42.02 25.21 40.00 19.20 36.99 141.505.83 319.50 43.32 25.89 54.00 15.80 40.98 83.403.97 100.10 21.69 11.96 40.00 7.90 42.79 69.243.17 218.60 39.51 15.26 34.00 10.50 50.98 84.242.77 239.80 26.06 15.82 35.00 10.20 41.43 80.903.17 156.80 19.73 8.34 42.00 7.60 39.21 71.012.97 281.10 28.56 11.42 48.00 12.60 37.95 81.013.17 142.50 36.75 9.93 43.00 13.30 32.61 61.641.80 195.50 28.53 7.32 36.00 9.70 37.41 50.923.17 153.90 20.90 8.21 37.00 7.60 31.37 38.213.77 104.20 30.34 12.34 24.00 11.80 39.31 57.164.79 72.10 65.54 11.55 35.00 19.80 26.04 47.583.57 190.80 31.33 10.67 65.00 15.70 51.56 94.026.47 282.90 52.68 20.34 25.00 22.90 32.53 103.507.34 149.00 44.22 20.14 33.00 16.00 35.43 147.758.23 121.30 43.29 31.63 86.00 11.40 33.21 46.8610.74 479.20 96.28 29.23 98.00 25.30 80.36 112.3511.68 870.50 70.84 35.17 302.00 29.10 78.15 435.447.34 279.00 51.25 27.95 44.00 22.50 51.20 117.666.05 162.00 36.22 17.91 35.00 14.20 36.41 61.025.41 907.00 43.08 36.48 10.00 14.50 41.02 121.206.26 132.90 42.59 16.58 27.00 16.20 35.52 63.316.47 197.00 38.18 21.09 64.00 18.60 40.18 168.056.47 100.70 36.19 13.31 42.00 11.50 34.34 56.234.79 119.10 35.76 19.71 44.00 9.90 39.66 67.067.56 63.50 33.65 21.90 60.00 12.50 41.29 60.509.35 156.00 57.36 31.06 59.00 25.80 51.03 95.90]; %8种重金属元素的浓度原始数据>> bjz=[3.61303113.23512.33169]'; %8种重金属元素的背景值的均值>>[n,m]=size(data1);>> for i=1:m %求污染程度数据矩阵data2(:,i)=data1(:,i)./bjz(:,i);end>>data3=zscore(data2); %将污染程度数据矩阵中心化标准化>> R3=data3'*data3./n %求污染程度矩阵的相关系数矩阵R3 =0.9969 0.2539 0.1884 0.1592 0.0642 0.3156 0.2890 0.24610.2539 0.9969 0.3513 0.3955 0.2639 0.3283 0.6583 0.42980.1884 0.3513 0.9969 0.5299 0.1029 0.7135 0.3816 0.42300.1592 0.3955 0.5299 0.9969 0.4154 0.4930 0.5184 0.38610.0642 0.2639 0.1029 0.4154 0.9969 0.1026 0.2972 0.19520.3156 0.3283 0.7135 0.4930 0.1026 0.9969 0.3058 0.43500.2890 0.6583 0.3816 0.5184 0.2972 0.3058 0.9969 0.49210.2461 0.4298 0.4230 0.3861 0.1952 0.4350 0.4921 0.9969 >> [P,score,egenvalue,t2]=princomp(data3) %对标准化污染程度数据做主成分分析P =-0.2256 0.1861 -0.6932 0.6286 -0.0346 0.0990 -0.0130 0.1659 -0.3767 -0.2624 -0.2875 -0.3676 -0.3346 -0.4944 0.4024 0.2305 -0.3895 0.4140 0.3089 -0.0527 -0.1442 -0.1494 -0.5203 0.5146 -0.4009 -0.1162 0.3718 0.1569 -0.2034 0.6210 0.4560 0.1674 -0.2165 -0.6279 0.3028 0.5121 0.2027 -0.3585 -0.1862 -0.0236 -0.3831 0.4798 0.1932 0.1561 -0.0183 -0.3038 0.2180 -0.6490 -0.4049 -0.2930 -0.2415 -0.2828 -0.2074 0.3297 -0.5166 -0.4396 -0.3704 0.0349 -0.1254 -0.2750 0.8604 0.0909 0.1005 0.1079score =0.5456 0.4760 -0.2385 0.9238 0.0347 0.0562 -0.0448 -0.00680.7236 0.3890 0.1517 0.4457 0.0965 0.0977 -0.0533 -0.04400.1029 -0.6786 -0.3148 -0.6068 -0.1762 0.0955 0.2073 0.26030.5289 -0.0888 0.0282 0.7029 0.1653 -0.1864 0.0361 0.1829-2.2377 -0.8590 -0.8366 -1.0018 0.5103 0.4119 -0.4269 -0.6101 -7.0283 -2.3626 -4.0263 -1.6355 -1.1503 1.6389 -1.4879 -2.1198 -0.3681 0.5809 -0.5586 0.6635 -0.1787 0.0705 -0.4055 0.3925 -15.5620 -6.6945 5.7248 3.5181 -1.3891 6.1650 2.6337 1.0367 -6.0371 -6.9258 1.2082 2.9402 1.8860 -4.2464 -1.0592 -0.2348 -0.0015 0.7581 -0.4581 0.8739 -0.1659 -0.2192 0.1137 0.09280.6954 0.1341 0.0674 0.3664 0.0591 0.0268 -0.0202 0.1885-0.2674 0.3478 -0.8345 0.7230 0.0449 0.1003 0.0674 -0.06300.1822 0.5162 0.2579 0.2336 -0.1541 -0.0185 -0.3874 -0.1035-2.1906 0.7026 0.6746 -1.3487 0.8725 0.3109 -1.5612 1.6705 -1.5324 -0.2124 -0.3571 -0.9523 0.0396 -0.0076 -0.2709 -0.0697 -6.0460 -2.4069 -3.9522 -2.5619 -2.0637 1.4629 -2.7735 -2.3424 -1.3424 -0.2013 -0.2190 -0.5147 -0.1666 0.4430 -0.0608 0.0551 -0.6321 0.1785 -0.4933 0.2850 0.0627 0.1584 0.1581 0.0416 -1.2540 0.6515 -0.1718 -0.1308 -0.0092 0.0480 -0.8613 0.6978 -7.5796 3.7551 1.3460 -1.7726 -0.6913 -0.9056 -5.5039 3.41100.0944 -0.2025 -0.2070 -0.2764 0.0309 0.3363 -0.4892 -0.0266 -17.4212 8.9703 5.9221 -0.0944 -1.4722 -1.2894 0.8421 0.1725 -2.1046 1.4921 -0.2319 0.4977 0.0202 -0.1274 -0.6136 0.04220.6397 -0.3411 0.4288 -0.5322 0.1214 0.3348 -0.3583 0.12191.4171 0.0243 0.4828 0.1015 0.1464 0.3042 -0.1825 0.2053 -1.7146 -0.1366 -0.0385 -0.4983 -0.6268 0.1689 0.4550 0.2763 -0.0550 -0.1538 -0.0622 -0.2113 -0.1635 -0.0413 0.1809 -0.0872 0.3403 -0.3241 0.1514 -0.6483 0.1454 0.0456 0.0582 -0.0361 -2.2528 0.8758 -3.4344 3.6015 -0.4367 -0.2157 -0.1284 0.2580 -4.7160 1.0707 -3.4565 0.9714 2.5440 0.0534 0.4370 0.1119 -2.7709 -0.0334 -1.8314 -0.2652 -0.0324 0.0437 -0.0380 -0.7412 -0.3140 -0.0641 0.5062 -0.8364 -0.3898 -0.3550 -0.1278 0.7118 -0.7990 -0.1320 -0.4332 -0.3535 -0.2162 -0.3231 0.4275 0.1141 -1.6491 -0.6296 -0.6280 -1.1407 -0.6168 -0.6762 0.3947 0.1354 -1.7686 -0.1825 -0.0992 -1.1970 -0.6814 -0.8994 0.3968 -0.0186 -3.9091 0.7415 -0.2673 -2.9500 6.3803 0.2921 0.2126 0.7461 -1.4647 -0.3831 -0.5316 -1.0731 -0.3343 -0.5569 0.1834 0.2274 -0.9190 -0.3578 -0.1369 -1.0095 -0.1176 -0.1736 0.1963 -0.2639 -0.6199 -0.5094 -0.0971 -0.8925 -0.1719 -0.0425 -0.3181 -0.0942 -2.1994 -0.7106 -0.8728 -1.0604 -0.8158 -0.4901 0.6209 0.1088 -1.6930 0.1943 -2.2379 2.4508 -0.2430 -0.4713 -0.3154 0.7789 -1.1941 0.0654 -0.0643 0.2298 -0.5284 0.8791 0.1192 -0.0071 -1.7783 -0.0857 -0.4393 -0.8688 0.1825 -0.1170 0.2485 -0.2336 -1.3269 -0.3879 -0.1961 -1.0676 -0.1696 -0.1690 0.3273 -0.0182 -1.7262 -0.4834 -0.0588 -1.0235 -0.0390 0.1464 0.7781 0.2450 -0.3146 -0.4307 -0.4538 -0.6836 -0.4914 -0.5546 0.5160 0.2878 -0.3077 -0.3195 -0.0877 -0.8476 -0.4049 -0.5604 0.3973 0.3028 0.2697 0.5142 0.2370 0.2496 -0.0752 -0.1768 0.1170 -0.3981 -2.0172 0.7524 1.0532 -0.7316 -0.9341 -1.0987 -1.6186 1.9530 -0.1381 0.5167 -0.2506 0.3730 0.6859 0.0785 0.1171 -0.0865 0.7240 0.3319 0.3071 0.3205 0.0841 0.0607 -0.0694 -0.0735 -0.0150 -0.3424 -0.1356 -0.4977 0.0635 0.2120 -0.0350 0.0194 0.0576 -0.2000 -0.0237 -0.4499 0.1273 0.2745 -0.2710 0.2023 -0.3202 -0.4893 0.6425 -0.4004 -0.0446 1.0314 0.7140 0.1861 0.4307 -0.3085 0.2150 -0.6014 0.0067 0.0449 -0.0530 0.1206 -0.2662 -0.7819 0.0386 -1.1966 -0.2686 0.1909 -0.4906 -0.1128 0.2713 -0.2298 0.2108 -0.5493 -0.1878 -0.1247 0.1894 0.0785 -0.2246 -0.7164 -0.1448 -0.8876 -0.4672 0.4291 -0.5872 -0.7035 0.6481 -0.0998 0.7073 -0.4511 0.0103 0.1054 0.1706 0.0970 0.5783 -0.7979 -0.0027 -0.9507 -0.4412 -0.2953 0.2737 0.6414 -4.9523 1.3451 -0.8451 -2.9211 8.8247 0.5078 1.3004 -0.6180 1.0347 -0.1646 0.3122 -0.1042 0.0719 0.4338 -0.2773 -0.1365 0.8726 -0.4966 0.3722 -0.6675 -0.0569 0.2092 -0.1495 0.1663 0.8251 -0.4207 0.4898 -0.6795 -0.0298 0.0953 -0.0850 0.2530-0.1942 -0.9026 -0.1482 -1.4141 -0.7682 -0.8284 0.6967 0.7609 0.0322 -0.8372 -0.0282 -1.1085 -0.2348 0.4498 -0.5239 -0.0294 0.3535 -0.5388 0.1385 -0.8978 -0.4007 -0.3706 0.2416 0.4858 0.5465 0.2398 0.0786 0.3970 -0.1003 0.1225 0.2374 0.14640.5999 -0.4428 0.0847 -0.6828 0.0925 -0.0251 0.0617 0.33341.0220 0.1884 0.4185 0.1384 0.1096 0.1586 -0.0265 -0.0356 0.7568 -0.6009 0.1811 -0.7472 -0.1007 0.0866 -0.0003 0.1035 0.5791 0.7669 -0.1772 1.0316 0.0466 0.0941 -0.0653 -0.0231 0.5777 -0.2940 0.3178 -0.4222 -0.1304 0.2144 0.0321 -0.0681 0.9969 0.0506 0.5431 -0.1119 0.0623 0.1465 -0.0594 -0.04600.4834 -0.2277 0.2977 -0.5526 -0.0828 -0.0171 0.0098 -0.09351.8398 -0.2509 0.7183 -0.1471 0.2235 0.3812 -0.1144 0.26030.2548 0.4254 -0.5970 0.7625 -0.1701 -0.0364 0.0853 0.10581.8317 -0.4542 0.8235 -0.4658 0.1887 0.3240 -0.0319 0.2644 0.3311 -0.6401 0.2281 -1.0978 -0.2421 -0.2917 0.2434 0.15270.5054 0.7159 0.8483 0.0558 0.0455 -0.2427 -0.0024 -0.58781.0213 0.3558 0.1137 0.5801 0.1244 0.2419 -0.0707 0.06690.1123 0.9352 -0.7452 1.6501 -0.0884 0.4054 -0.0489 0.06351.1602 0.2701 0.0336 0.6235 0.1197 0.3106 -0.1185 0.2258 -2.5152 1.0417 -6.3439 4.2111 -1.0196 -0.1554 0.5575 1.6064 0.5339 -0.4580 0.0262 -0.6347 -0.3144 -0.2299 0.1989 0.28090.8768 -0.5859 0.3732 -0.7010 -0.2629 -0.0286 0.2501 0.53371.4739 -0.5605 0.6379 -0.6457 0.1290 0.2485 -0.0275 0.2146 1.1412 0.4411 -0.0234 0.8324 0.1481 0.3742 -0.2152 0.1941 1.1723 -0.3646 0.4770 -0.4669 0.0490 0.2327 -0.1095 0.1148 -1.2112 -0.6208 -1.0304 -1.0941 -1.0874 -1.2110 0.8126 -0.0459 0.7708 0.4939 0.1799 0.4678 0.1187 0.0905 -0.0748 -0.0563 0.7194 0.5240 -0.1438 0.8025 0.0400 0.2259 -0.1583 0.0648 0.7944 -0.9189 0.5332 0.3728 0.2052 -0.1612 -0.0980 0.2948 0.9803 0.2176 0.3573 0.1695 0.1169 0.1536 -0.0615 -0.0981 -1.5418 -1.3814 -1.7142 -2.0008 -2.1581 -3.1459 2.5861 1.58680.2234 0.2447 -0.2142 0.3473 -0.1840 0.0135 0.1959 -0.03351.0684 -0.0200 0.2915 0.0147 0.0063 0.1445 -0.0589 0.1836 0.5102 -0.4695 0.2141 -0.8049 -0.1532 -0.1505 0.1388 0.11860.1351 -0.3252 0.6881 -0.6096 -0.2194 0.2954 0.4798 0.03551.4382 -0.0785 0.3928 0.1568 0.2213 0.3376 -0.0624 0.1678 0.9228 0.5060 -0.1865 0.9060 0.0832 0.2852 -0.1856 0.2015 0.7335 0.1135 -0.0839 0.2394 -0.0191 0.1308 -0.0519 0.03200.9324 -0.6877 0.3173 -0.9078 -0.2174 -0.0534 0.0507 0.14601.1803 -0.4970 0.4240 -0.5047 0.0370 0.1793 -0.0235 0.23220.8836 0.0599 0.0175 0.2708 -0.0123 0.2535 -0.0508 0.11051.7497 -0.2216 0.8038 -0.2423 0.2205 0.2957 -0.0487 0.1209 0.4705 0.0381 -0.1928 0.3225 -0.0839 0.2425 0.1211 0.1778 0.9697 0.1825 0.3466 0.1776 0.0190 0.0359 0.0621 -0.08941.0486 0.0656 0.0792 0.6619 0.1062 0.4412 0.0459 0.28020.3823 1.2290 0.8225 0.5786 0.0397 -0.3092 -0.0381 -0.57351.4829 -0.1092 0.2502 0.1891 0.1353 0.3403 -0.0917 0.3202 1.4459 -0.0130 0.6431 0.0268 0.2163 0.3198 -0.0399 0.08020.8508 0.1939 0.3332 0.1067 0.0396 0.0881 -0.0200 -0.08441.1861 0.0885 0.4469 0.1916 0.0722 0.2072 0.0544 0.1862 1.3512 -0.0505 0.6217 -0.1298 0.1299 0.1695 -0.1094 0.1650 1.3321 0.4301 1.0120 0.0658 0.3255 0.1041 -0.0609 -0.2046 1.4784 -0.2019 0.3393 -0.0076 0.1701 0.3084 -0.1081 0.3645 1.0978 0.1706 0.1035 0.3954 0.0722 0.1516 -0.0253 0.2451 1.4059 -0.1147 0.1648 0.1935 0.1880 0.3788 -0.1325 0.25140.3092 1.1165 0.7832 0.4217 0.0644 -0.3575 -0.0249 -0.48011.1689 0.0514 0.4286 0.0063 0.1077 0.0795 0.0210 0.11380.7967 0.7055 0.3276 0.6135 0.1147 0.0563 -0.0939 -0.17531.3591 -0.6709 0.3044 -0.5580 0.0136 0.3660 -0.1928 0.2431 1.6505 -0.2852 0.6425 -0.2593 0.1926 0.2667 -0.0500 0.21670.9654 0.1082 0.8399 -0.4113 0.0687 -0.2751 0.2406 -0.19281.6196 -0.2004 0.7395 -0.2598 0.1962 0.1714 0.0319 0.1721 0.9338 0.4434 0.7083 0.1116 0.1093 -0.0636 -0.0446 -0.1938 -0.0224 1.8951 1.8098 0.3005 0.1527 -0.8642 0.4199 -1.80240.4598 -0.3654 0.4884 -0.8496 -0.2460 -0.0137 -0.3065 -0.42171.1199 -0.7696 0.4580 -0.9040 0.0627 0.3781 -0.1954 0.0908 1.6095 -0.1915 0.6996 -0.2041 0.2183 0.2580 0.0036 0.0999 1.7576 -0.1751 0.6513 -0.0680 0.2704 0.3653 -0.1255 0.2795 1.3236 -0.0558 0.5546 -0.1005 0.0772 0.1055 -0.0197 0.1749 1.5568 -0.2528 0.6675 -0.2453 0.1433 0.3254 -0.0999 0.0547 -2.28193.4783 2.5596 0.0509 -0.0632 -1.9845 0.2218 -3.1007 1.5508 0.0924 0.6973 0.0827 0.1982 0.2972 -0.2033 0.1161 1.8592 -0.1918 0.7847 -0.1554 0.3280 0.4086 -0.1762 0.1513 0.0733 1.5738 -0.0808 1.5086 0.0907 -0.2093 0.1524 -0.6012 0.0548 -0.6737 -0.9257 -0.0157 -0.2853 0.9373 -0.9108 -0.2132 0.8116 0.1771 0.1455 0.3367 0.0141 0.1669 -0.1403 0.2165 0.4910 0.1651 -0.4949 0.7257 0.0634 0.2553 -0.1077 0.2680 0.1334 0.0532 -0.0667 -0.0370 -0.1238 -0.0554 -0.0499 0.0735 -4.3058 -1.2052 -2.7072 -2.4707 1.1227 -0.0943 -0.1468 -0.1098 -0.4295 -0.6749 -0.9341 -0.4303 -0.6773 0.0528 -0.2342 -0.1111-0.1933 -1.0926 -0.4721 0.2073 -0.2135 0.6730 -1.1701 -0.5717 1.0010 0.4069 -0.0233 0.7211 0.0926 0.2576 -0.0931 0.1129 0.1729 -0.0758 -0.4896 0.2159 -0.2704 0.4691 -0.5391 -0.3240 0.9282 0.1422 0.0027 0.4359 0.0325 0.2666 -0.1663 0.2209 0.9517 0.2118 -0.1487 0.5521 0.0370 0.1945 -0.0411 0.2519 -0.7175 0.5932 -0.4110 0.4186 -0.0085 -0.2246 -0.0397 -0.1848 -0.7932 0.0804 -0.3808 -0.2108 -0.3324 -0.0177 -0.3394 -0.0270 -1.2166 -0.4314 -1.2681 -0.3538 -0.9096 -0.6028 0.7595 0.1899。