解直角三角形同步练习2附答案
- 格式:doc
- 大小:136.00 KB
- 文档页数:3
28.2 解直角三角形配套课时练习(2)1.在下面条件中不能解直角三角形的是()A.已知两条边B.已知两锐角C.已知一边一锐角D.已知三边2.在△ABC中,∠C=90°,a=5,c=13,用科学计算器求∠A约等于()A.24°38′ B.65°22′ C.67°23′ D.22°37′3.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,有下列关系式:•①b=ccosB,②b=atanB,③a=csinA,④a=bcotB,其中正确的有()A.1个B.2个C.3个D.4个4.为测一河两岸相对两电线杆A、B间距离,在距A点15m的C处,(AC⊥AB),测得∠ACB=50°,则A、B间的距离应为( )mA.15sin50°B.15cos50°C.15tan50°D.15cot50°5.在△ABC中,∠C=90°,三角形面积为,则斜边c=_____,∠A的度数是____.6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a,•则两条直角边的和为________.7.四边形ABCD中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________.8.如图,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.(结果保留≈1.41≈1.73)9.如图所示,在Rt△ABC中,a,b分别是∠A,∠B的对边,c为斜边,如果已知两个元素a,∠B,就可以求出其余三个未知元素b,c,∠A.52(1)求解的方法有多种,请你按照下列步骤,完成一种求解过程.第一步:已知:a,∠B,用关系式:_______________,求出:_________________;第二步:已知:_____,用关系式:_______________,求出:_________________;第三步:已知:_____,用关系式:_______________,求出:_________________.(2)请你分别给出a,∠B的一个具体数据,然后按照(1)中的思路,求出b,c,∠A的值.10.在等腰梯形ABCD中,AB∥CD,CD=3cm,AB=7cm,高为cm,求底角B的度数.b caA11.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A,B,C,D正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架设方案最省电线=1.414=1.732=2.236).12.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两个根,求Rt△ABC中较小锐角的余弦值.参考答案:1.B 。
28.2 解直角三角形第3课时坡角、方向角与解直角三角形1. 如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50 m,则迎水坡面AB的长度是()A.100 m B.1003 mC.150 m D.503 m2. 小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+3)米 B. 12米 C. (4-23)米 D. 10米3. 如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为米.4. 如图,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起始点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是cm.5. 如图,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003 m到达B点,然后再沿北偏西30°方向走了500 m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?参考答案1.A2.A3.4.2105.解:(1)过B 点作BE ∥AD ,如图,∴∠DAB =∠ABE =60°.∵30°+∠CBA +∠ABE =180°,∴∠CBA =90°, 即△ABC 为直角三角形.由已知可得:BC =500 m ,AB ,由勾股定理可得:AC 2=BC 2+AB 2,∴1000(m)=AC .(2)在Rt △ABC 中,∵BC =500 m ,AC =1000 m , ∴∠CAB =30°.∵∠DAB =60°,∴∠DAC =30°. 即点C 在点A 的北偏东30°的方向.。
[7.5 第2课时 解直角三角形的应用]一、选择题1.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ) A .7sin35° B.7cos35°C .7cos35°D .7tan35°2.如图K -31-1,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 等于( )图K -31-1A .0.5B .1.5C .4.5D .23.等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为链接听课例2归纳总结( )A. 3 cmB.4 33cmC .2 cmD .2 3 cm 4.如图K -31-2,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )图K-31-2A.30° B.45° C.60° D.75°5.如图K-31-3,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )图K-31-3A.13B.2-1 C.2- 3 D.14二、填空题6.如图K-31-4,在平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹的锐角为________.(精确到0.1°)图K-31-47.如图K-31-5,在菱形ABCD中,AC=6,BD=8,则sin∠ABC=________.图K-31-58.如图K-31-6,在△ABC中,∠A=30°,∠B=45°,AC=2 3,则AB的长为________.图K-31-69.2018·安徽四模如图K-31-7,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH =BC,那么tan∠BAH的值是________.图K -31-710.2017·黑龙江在△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是________. 三、解答题11.2018·淮南模拟如图K -31-8,在△ABC 中,∠A =30°,cos B =45,AC =6 3.求AB 的长.链接听课例2归纳总结图K -31-812.如图K -31-9,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO =5,sin ∠BOA =35.求:(1)点B 的坐标; (2)cos ∠BAO 的值.图K -31-913.2018·广安改编如图K -31-10,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,连接AC ,CG 是⊙O 的弦,CG ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,连接BE .若cos P =45,PC =10,求BE 的长.图K -31-10阅读理解在锐角三角形ABC 中,∠A ,∠B ,∠ACB 的对边分别是a ,b ,c .如图K -31-11所示,过点C 作CD ⊥AB 于点D ,则cos A =AD b,即AD =b cos A ,图K -31-11∴BD =c -AD =c -b cos A .在Rt △ADC 和Rt △BDC 中,有CD 2=AC 2-AD 2=BC 2-BD 2, ∴b 2-b 2cos 2A =a 2-(c -b cos A )2,整理,得a 2=b 2+c 2-2bc cos A ,(1)同理可得b 2=a 2+c 2-2ac cos B ,(2) c 2=a 2+b 2-2ab cos ∠ACB . (3)这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠ACB ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知∠A =60°,b =3,c =6,则由(1)式可得a 2=32+62-2×3×6cos60°=27, ∴a =3 3,则∠B ,∠C 可由式子(2),(3)分别求出,在此略. 根据以上阅读理解,请你试着解决如下问题:已知锐角三角形ABC 的三边a ,b ,c (a ,b ,c 分别是∠A ,∠B ,∠C 的对边)分别是7,8,9,求∠A ,∠B ,∠C 的度数.(结果精确到1°)详解详析[课堂达标]1.[解析] C 在Rt △ABC 中,cos B =BCAB ,所以BC =AB ·cos B =7cos 35°.故选C .2.[解析] C 如图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限, ∴AB =t ,OB =3. 又∵tan α=AB OB =t 3=32,∴t =4.5. 故选C .3.[解析] D 如图,过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC.∵AD ⊥BC ,∴∠B =30°.∵AB =2 cm , ∴AD =1 cm ,BD = 3 cm , ∴BC =2 3 cm .故选D .4.[解析] C ∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =1,AB =2,∴sin ∠ABC =ACAB =12,∴∠ABC =30°,∠A =60°,∴∠D =60°,故选C . 5.[解析] A ∵在△ABC 中,∠BAC =90°,AB =AC , ∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点, ∴AD =DC =12AC.∵DE ⊥BC 于点E , ∴∠CDE =∠C =45°, ∴DE =EC =22DC =24AC , ∴tan ∠DBC =DEBE =24AC 2AC -24AC =13. 故选A .6.[答案] 67.4°[解析] 如图,过点P 作PA ⊥x 轴,垂足为A.由勾股定理,得OP =122+52=13,∴cos ∠POA =513,∴∠POA ≈67.4°.7.[答案] 2425[解析] 过点A 作AE ⊥BC ,垂足为E ,由AC =6,BD =8,根据勾股定理得AB =32+42=5,菱形ABCD 的面积=12AC·BD=BC·AE,即12×6×8=5×AE ,得AE =245,所以sin ∠ABC=AE AB =2455=2425. 8.[答案] 3+ 3[解析] 如图,过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°,∴∠BCD =∠B =45°, ∴CD =BD.∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.9.[答案] 12[解析] 设AH =BC =2x.∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x ,∴tan ∠BAH =BH AH =x 2x =12.10.[答案] 21 3或15 3[解析] (1)当∠ACB 为锐角时,如图①,过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,∵AB =12,∠B =30°, ∴AD =12AB =6,BD =AB·cos B =12×32=6 3.在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =6 3+3=7 3, 则S △ABC =12BC·AD=12×7 3×6=21 3;(2)当∠ACB 为钝角时,如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D.由(1)知,AD =6,BD =6 3,CD =3,则BC =BD -CD =5 3,∴S △ABC =12BC·AD=12×5 3×6=15 3.故答案为21 3或15 3.11.解:如图,过点C 作CD ⊥AB 于点D.∵∠A =30°,∴CD =12AC =3 3,AD =AC ·cos A =9.∵cos B =45,∴设BD =4x ,则BC =5x.由勾股定理,得CD =3x.由题意,得3x =3 3,解得x =3, ∴BD =4 3,∴AB =AD +BD =9+4 3.12.解:(1)如图,过点B 作BH ⊥OA ,垂足为H.在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =BO·sin ∠BOA =5×35=3,∴OH =BO 2-BH 2=4, ∴点B 的坐标为(4,3).(2)∵OA =10,OH =4,∴AH =6. 在Rt △AHB 中, ∵BH =3,AH =6, ∴AB =BH 2+AH 2=3 5, ∴cos ∠BAO =AH AB =2 55.13.解:(1)证明:连接OC.∵PC 与⊙O 相切于点C ,∴∠PCO =90°,∴∠PCA +∠OCA =90°. ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠OCB +∠OCA =90°, ∴∠PCA =∠OCB.∵OC =OB ,∴∠OCB =∠ABC , ∴∠PCA =∠ABC.(2)∵cos P =PC OP =45,PC =10,∴OP =252,∴OC =OP 2-CP 2=152,∴AB =15.∵AE ∥PC ,∴∠BAE =∠P.∵AB 是⊙O 的直径,∴∠E =90°, ∴AE =AB·cos ∠BAE =15×45=12,∴BE =AB 2-AE 2=9. [素养提升][解析] 此题只要把三边长代入余弦定理公式即可求出三角的余弦值,从而求出三角.解:由(1)得72=82+92-2×8×9cos A , 则cos A =23,∠A ≈48°.由(2)得82=72+92-2×7×9cos B , 则cos B =1121,∠B ≈58°,∴∠C =180°-∠A -∠B ≈74°.。
九年级数学家庭作业(06-09-26) 姓名⒈精亚·新天地为方便顾客购物,准备在一至二楼之间安装电梯,如图所示,楼顶与地面平行。
要使身高2米以下的人在笔直站立的情况下搭乘电梯时,在B 处不碰到头部。
请你帮该集团设计,则电梯与一楼地面的夹角α最小为 度。
⒉课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离 地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,则旗杆EG 的高度为 .⒊一段路基的横断面是直角梯形,如左下图所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图所示的技术要求。
试求出改造后坡面的坡度是多少?⒋如图,山脚下有一棵树AB ,小强从点B 沿山坡向上走50m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m )BC PD A10°15°⒌如图,我校九(4)班的一个学习小组进行测量孤山高度的实践活动。
部分同学在山脚点A 测得山腰上一点D 的仰角为30°,并测得AD 的长度为180米;另一部分同学在山顶点B 测得山脚点A 的俯角为45°,山腰点D 的俯角为60°。
请你帮助他们计算出小山的高度BC (计算过程和结果都不取近似值)。
⒍如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心、500m 为半径的圆形区域为居民区。
取MN 上的另一点B ,测得BA 的方向为南偏东75°。
已知MB =400m ,通过计算回答,如果不改变方向,输水管道是否会穿过居民区。
⒎如图,城市规划期间,要拆除一电线杆AB ,已知距电线杆水平距离14米的D 处有一大坝,背水坡的坡度i =1: 0.5,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2米的人行道.请问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域)。
一、基础知识1、解直角三角形在实际问题中的应用:(1)弄清题中名词、术语的意义,把握题意画出几何图形;(2)将实际问题的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形或者矩形;(3)寻找基础三角形,并解这个三角形.2、仰角、俯角概念:如图所示,在测量中,我们把在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.二、重难点分析重点:把实际问题转化为数学问题. 并能选用适当的锐角三角函数关系式去解答直角三角形问题 .难点:把实际问题转化为数学问题.例1、在山脚C处测得山顶A的仰角为45º,沿着坡角为30 °的斜坡前进400米到达D点,在D点测得山顶A的仰角为60 º ,求山高AB。
【点评】将实际问题转化为数学问题,并正确画出示意图,构造直角三角形,根据AB=BC 建立方程求解.例2、两座建筑AB及CD,其地面距离AC为50米,从AB的顶点B测得CD的顶部D的仰角β=30°,测得其底部C的俯角a=60°, 求两座建筑物AB及CD的高.(精确到0.1米)∴CE=BE•tanα【点评】本题考查俯角、仰角的知识,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.三、中考感悟1、(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A. (6+6)米B. (6+3米C. (6+2米D. 12米2、(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A. 100米B. 50C.D. 50米【解析】过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.四、专项训练(一)基础练习1、如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A.6sin52︒米B.6tan52︒米C. 6·cos52º米D.6cos52︒米【答案】D2、如图,某侦察机在空中A处发现敌方地面目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=4500米,tanα,则飞机到目标B的水平距离BC为()A BC D故选A.【答案】A3、初三(1)班研究性学习小组为了测量学校旗杆的高度(如图),他们在离旗杆底部E 点30米的D处,用测角仪测得旗杆顶端的仰角为30°,已知测角仪器高AD=1.4米,则旗杆BE的高为米(结果保留根号)4、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m).A. 3.5mB. 3.6mC. 4.3mD. 5.1m5、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A. 200米B米C米D. 100+1)米【答案】D6、如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1≈1.7)【解析】首先分析图形:根据题意构造两个直角三角(二)提升练习7、在中俄“海上联合-2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5)8、如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).。
【九年级】九年级数学下28.2解直角三角形及其应用(二)同步练习(人教版附答28.2解直角三角形及其应用同步练习(二)一、单选题(本大题共15个子题,每个子题得3分,共计45分)一、一人乘雪撬沿坡度为的斜坡滑下距离(米)与时间(秒)之间的关系为.若滑动时间为秒,则他下降的垂直高度为().a、仪表b.米c、仪表d.米2.如图所示,有人站在楼顶观察对面的直旗杆。
已知观测点到旗杆的距离(长度),测量旗杆顶部的仰角,测量旗杆底部的俯角,则旗杆高度为()a.(b(c.(d(3、如图,在处测得旗杆的顶端的仰角为,向旗杆前进米到达处,在处测得的仰角为,则旗杆的高为()米A.b.Cd.4.在中学升国旗时,同学a站在旗杆底部以引起注意。
当国旗升到旗杆顶端时,同学视线的仰角为。
如果他的眼睛离开地面,旗杆的高度是()a.米b、仪表c.米d、仪表5、如图,一渔船在海岛南偏东方向的处遇险,测得海岛与的距离为海里,渔船将遇险情况报告给位于处的救援船后,沿北偏西方向向海岛靠近,同时,从处出发的救援船沿南偏西方向匀速航行,分钟后,救援船在海岛处恰好追上渔船,那么救援船航行的速度为()海里/小时.A.b.Cd.6.如图所示,为了测量一棵树垂直于地面的高度,在距树底m处测量的树顶仰角为,则树高为()a.米b、仪表c.米d、仪表7、如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的点处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离长是()a、大海b.海里c、大海d.海里8.如图所示,该船沿正南方向以每小时海里的匀速航行。
据观察,灯塔位于该地点的西偏南方向。
航行数小时后,它到达了北。
据观察,灯塔的方向是西偏南。
如果船继续向南航行到离灯塔最近的位置,船与灯塔之间的距离约为(通过科学计算器,,)获得)9、小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,则树的高度为()a、仪表b.米c、仪表d.米10.为了如图所示测量上坡坡道的坡度,小明测量了如图所示的数据,则坡度角的正切值为()a.Bc.D11、如图,长的楼梯的倾斜角为,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为,则调整后的楼梯的长为()12.如图所示,在,,,中,点是边的中点。
28.2解直角三角形(2)1. 如图,由D点测塔顶A点和塔基B点仰角分别为60°和30°.已知塔基出地平面20米(即BC为20米)塔身AB的高为 [ ]2.如图,一敌机从一高炮正上方2000米经过,沿水平方向飞行,稍后到达B点,这时仰角为45°,1分钟后,飞机到达A点,仰角30°,则飞机从B到A的速度是[ ]米/分.(精确到米)A.1461B.1462C.1463D.14643. 如图所示,河对岸有水塔CD.今在A处测得塔顶C的仰角为30°,前进20米到达B处,又测得C的仰角为45°,则塔高CD(精确到0.1m)是[ ]mA.25.3B.26.3C.27.3D.28.34. 如图:在200米高的峭壁上,测得一塔的塔顶与塔基的俯角分别为30和60°,那么塔高是 [ ]米5. 如图:从B处测得建筑物上旗杆EC顶点C的仰角是60°,再从B的正上方40米高层上A处,测得C的仰角是45°,那么旗杆顶点C离地CD的高度是[ ]米.二、填空题1. 如图:已知在一峭壁顶点B测得地面上一点A俯角60°,竖直下降10米至D,测得A 点俯角45°,那么峭壁的高是_____________米(精确到0.1米)三、解答题1. 从山顶D测得同一方向的A、B两点,俯角分别为30°,60°,已知AB=140米,求山高(A、B与山底在同一水平面上).(答案可带根号)2. 从与塔底在同一水平线的测量仪上,测得塔顶的仰角为45°,向塔前进10米,(两次测量在塔的同侧)又测得塔顶的仰角为60°,测量仪高是1.5米,求塔高(精确到0.1米).3. 两山脚B、C相距1500米,在距山脚B500米处A点,测得山BD、CE的山顶D、E仰角分别为45°,30°.求两山的高(精确到1米).4. 如图:山顶上有高为h的塔BC,从塔顶B测得地面上一点A的俯角是a,从塔底C测得A的俯角为b,求山高H.参考答案一、选择题1. C2. D3. C4. B5. C二、填空题23.7三、解答题70米1.32. 25.2米3. 500米,577米.4. 解:∵DA=(h+H)ctga,DA=Hctgb则Hctgb=hctga+Hctga即H(ctgb-ctga)=hctga。
2022年人教版数学九年级下册28.2《解直角三角形》同步练习一、选择题1.在△ABC 中,∠C=90°,AC=3,AB=4,欲求∠A 的值,最适宜的做法是( )A.计算tanA 的值求出B.计算sinA 的值求出C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a=4,b=3,则cosA 的值是( )A.35B.45C.43D.543.如图,在Rt △ABC 中,∠C=90°,AB=6,cosB=23,则BC 的长为( )A.4B.2 5C.181313D.1213134.如果等腰三角形的底角为30°,腰长为6 cm ,那么这个三角形的面积为( )A.4.5 cm2 B.93 cm 2 C.18 3 cm 2 D.36 cm 25.如图,A ,B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠BAC=90°,∠ACB=40°,则AB 等于( )A.asin40°米B.acos40°米C.atan40°米D.a tan40°米6.如图,在△ABC 中,∠B=60°,AD ⊥BC ,AD=3,AC=5,则BC 的长为( )A.4+ 3B.7C.5.5D.4+2 37.在△ABC 中,AB=122,AC=13,cos ∠B=22,则BC 边长为( ) A.7 B.8 C.8或17 D.7或17二、填空题8.在Rt △ABC 中,∠C=90°,a=20,c=202,则∠A=______,∠B=_____,b=_____.9.如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC=32,则AC=________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)10.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=35,BE=4,则tan ∠DBE 值是______.11.如图,在△ABC 中,AC=6,BC=5,sinA=23,则tanB=________.三、解答题12.如图,在Rt △ABC 中,∠C=90°,已知BC=26,AC=62,解此直角三角形.13.在Rt△ABC中,∠C=90°,c=43,∠A=30°,解这个直角三角形.14.如图,在Rt△ABC中,∠C=90°,∠B=55°,AC=4,解此直角三角形.(结果保留小数点后一位)15.如图,在△ABC中,BD⊥AC,AB=6,AC=53,∠A=30°.(1)求BD和AD的长;(2)求tan∠C的值.16.根据下列条件解Rt△ABC(∠C=90°).(1)∠A=30°,b=3; (2)c=4,b=2 2.17.探究:已知如图1,在△ABC中,∠A=α(0°<α<90°),AB=c,AC=b,试用含b,c,α的式子表示△ABC的面积;图1 图2应用:如图2,在□ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,试用含b,c,α的式子表示□ABCD的面积.参考答案1.答案为:C2.答案为:A3.答案为:A.4.答案为:B.5.答案为:C.6.答案为:A7.答案为:D8.答案为:45°45° 209.答案为:2410.答案为:2.11.答案为:4312.解:∵tanA=BC AC =2662=33, ∴∠A=30°.∴∠B=90°-∠A=90°-30°=60°, AB=2BC=4 6.13.解:∵∠A=30°,∴∠B=90°-∠A=60°.∵sinA=a c, ∴a=c ·sinA=43×sin30°=43×12=23, ∴b=c 2-a 2=(43)2-(23)2=6.14.解:∠A=90°-∠B=90°-55°=35°. ∵tanB=AC BC , ∴BC=AC tanB =4tan55°≈2.8. ∵sinB=AC AB , ∴AB=AC sinB =4sin55°≈4.9.15.解:(1)∵BD ⊥AC ,∴∠ADB=∠BDC=90°. 在Rt △ADB 中,AB=6,∠A=30°,∴BD=12AB=3. ∴AD=3BD=3 3.(2)CD=AC -AD=53-33=23,在Rt △BDC 中,tan ∠C=BD CD =323=32.16.解:(1)∠B=90°-∠A=90°-30°=60°.∵tanA=a b ,∴a=b ·tanA=3×33=1. ∴c=2a=2.(2)由勾股定理得:a=c 2-b 2=42-(22)2=2 2. ∵b=22,a=22,∠C=90°,∴∠A=∠B=45°.17.探究:过点B 作BD ⊥AC ,垂足为D.∵AB=c ,∠A=α,∴BD=csin α.∴S △ABC =12AC ·BD=12bcsin α. 应用:过点C 作CE ⊥DO 于点E. ∴sin α=EC CO. ∵在平行四边形ABCD 中,AC=a ,BD=b ,∴CO=12a ,DO=12b. ∴S △COD =12CO ·DO ·sin α=18absin α. ∴S △BCD =12CE ·BD=12×12asin α·b=14absin α. ∴S ABCD =2S △BCD =12absin α.。
解直角三角形 同步练习2
◆基础训练
1.在Rt △ABC 中,∠A=90°.
(1)若AC=21,BC=35,则AB=______,sinC=______;
(2)若∠B=30°,AC=______,BC=______.
2.•若某人沿坡度i=•3:•4•的斜坡前进10m ,•则他所在的位置比原来的位置升高______m . 3.若三角形两边长为6和8,这两边的夹角为60°,则其面积为______.
4.等腰三角形的周长为1,则顶角为_______. 5.一个锥形零件,图纸规定轴截面的倾斜角的正切值是1
16
,•则该锥形零件的锥度k 是( ) A .16 B .
132
C .116
D .18
6.在Rt △ABC 中,∠C=90°,若sinA=
2
3
,则cosA 的值为( ).
A .
35 B C .25 D 7.在Rt △ABC 中,∠C=90°,若BC=2,cosB=1
3
,则AC 的长为( )
A .
23
B .
C .
D .
43
8.如图,将两张宽度都为1的纸条叠放成如图所示的图形,•如果所成四边形的锐角为α,那么这个四边形的面积是( ) A .
11
.tan .tan .
cos sin B C D ααα
α
◆提高训练
9.如图,苏州某公园入口处原有三级台阶,每级台阶高20cm ,•水平宽度为30cm .现为了方便残疾人士,拟将台阶改为斜坡.设台阶的起点为A ,•斜坡的起始点为C ,现将坡角∠BCA 设计为30°,则AC 的长度为_______.
10.如图,有长为100m 的斜坡AB ,它的坡角是45°,现把它改为坡角为30°的斜坡AC ,求BC 的长(精确到0.1m ).
11.如图,AD 是△ABC 的角平分线,且AD=
16
3
C=90°,BC 及AB .
12.如图,我军某部在一次野外训练中,有一辆坦克准备通过一座小山,已知山脚和山顶的水平距离为1000米,山高为565米,如果这辆坦克能够爬30°的斜坡,试问:它能不能通过这座小山?
◆拓展训练
13.如图,已知电线杆AB 直立于地面上,•它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地
面成45°,∠A=60°,CD=4m ,BC=(m ,求电线杆AB 的长.
14.如图,为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2m ,下底宽为2m ,
坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6m ,求:
(1)渠面宽EF ;(2)修200m 的渠道需挖的土方数.
答案:
1.(1)28,
4
5
(2)10,20 2.6 3. 4.120°
5.D 6.B 7.C 8.D 9.601)cm 10.51.8m
11. 12.能 13. 14.(1)4.88m (2)710.4m 3。