天津耀华嘉诚国际中学必修第一册第五单元《三角函数》测试卷(含答案解析)
- 格式:doc
- 大小:1.78 MB
- 文档页数:21
一、选择题1.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( ) A.B .19-C.3D .192.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π3.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=4.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45 C .35D .355.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性 D .函数()f x 的值域为R 6.在ABC 中,tan sin cos A B B <,则ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.cos45sin15sin 45cos15︒︒-︒︒=( ). A .1B .12-C.2D .128.已知1sin cos 3αα+=,则sin 2α的值是( ). A .89B .89-CD. 9.已知()1sin 2=-f x x x ,则()f x 的图象是( ).A .B .C .D .10.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3511.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110012.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度D .向左平移π2个单位长度 二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.在ABC 中,若sin 2sin cos A C B =,则这个三角形的形状是________.15.若1sin cos (0)5x x x π+=-≤<,则cos2x =___________.16.已知()3sin 4cos f x x x =+,则当()f x 取最大值时的sin x = ___________.17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.19.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合.23.已知()()()()1122,,,A x f x B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,当()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式; (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,不等式()()2mf x m f x +≥恒成立,求实数m 的取值范围.24.已知函数()sin (sin )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.25.已知函数()211cos cos 24f x x x x =-,(x ∈R ) (1)当函数()f x 取得最大值时,求自变量x 的取值集合; (2)用五点法做出该函数在[]0,π上的图象; (3)写出函数()f x 单调递减区间.26.已知函数())2sin cos 3f x x x x π=--.(1)求()f x 的最小正周期、最大值、最小值; (2)求函数的单调区间;【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.B解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B3.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+ ⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A4.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C5.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B6.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.7.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.8.B解析:B 【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果. 【详解】∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=, ∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B9.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.10.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题11.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.等腰三角形【分析】利用公式利用两角和差的正弦公式化简并判断三角形的形状【详解】代入条件可得即即所以三角形是等腰三角形故答案为:等腰三角形解析:等腰三角形 【分析】利用公式()sin sin A B C =+,利用两角和差的正弦公式,化简,并判断三角形的形状. 【详解】180A B C ++=,()sin sin sin cos cos sin A B C B C B C ∴=+=+,代入条件可得sin cos cos sin 0C B C B -=,即()sin 0C B -=, 即0C B C B -=⇔=, 所以三角形是等腰三角形.故答案为:等腰三角形15.【分析】将已知等式两边平方可得结合已知的范围可得从而可求进而利用二倍角公式平方差公式即可求解【详解】解:因为两边平方可得可得所以可得所以故答案为: 解析:725【分析】将已知等式两边平方,可得242sin cos 025x x =-<,结合已知x 的范围可得sin 0x ≥,cos 0x <,从而可求7cos sin 5x x -==-,进而利用二倍角公式,平方差公式即可求解. 【详解】解:因为1sin cos (0)5x x x π+=-≤<,两边平方,可得112sin cos 25x x +=,可得242sin cos 025x x =-<,所以sin 0x ≥,cos 0x <,可得7cos sin 5x x -===-,所以22177cos 2cos sin (cos sin )(cos sin )()5525x x x x x x x =-=+-=-⨯-=. 故答案为:725. 16.【分析】先将函数化简求出辅助角的正切值求出函数最大值时的值进而求出的正弦值【详解】解:且所以这时所以故答案为:解析:35【分析】先将函数化简,求出辅助角的正切值,求出函数最大值时x 的值,进而求出x 的正弦值. 【详解】解:()3sin 4cos 5sin()f x x x x ϕ=+=+且4tan 3ϕ=, 所以()5max f x =,这时22x k πϕπ+=+,k Z ∈,所以22x k ππϕ=+-,k Z ∈,3sin sin(2)cos 25x k ππϕϕ=+-===,故答案为:3517.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.9【分析】根据扇形的弧长是6圆心角为2先求得半径再代入公式求解【详解】因为扇形的弧长是6圆心角为2所以所以扇形的面积为故答案为:9解析:9 【分析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式12S lr =求解. 【详解】因为扇形的弧长是6,圆心角为2, 所以632l r α===, 所以扇形的面积为1163922S lr ==⨯⨯=, 故答案为:9.19.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-20.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图解析:2【分析】把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值.【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝,所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈,所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可.【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 23.(1)()2sin 33f x x π⎛⎫=- ⎪⎝⎭;(2)13m ≥. 【分析】(1)由ϕ的终边上的点可求出ϕ,再由题可得23T π=,即可求出ω,得出解析式;(2)根据0,6x π⎡⎤∈⎢⎥⎣⎦可得()1f x ≤≤,不等式化为()212m f x ≥-+,求出()212f x -+的最大值即可.【详解】(1)角ϕ的终边经过点(1,P ,∴tan ϕ= 又02πϕ-<<,∴3πϕ=-.∵当()()124f x f x -=时,12x x -的最小值为3π, ∴23T π=,即223ππω=,∴3ω=, ∴()2sin 33f x x π⎛⎫=-⎪⎝⎭. (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,3,336x πππ⎡⎤-∈-⎢⎥⎣⎦,∴()1f x ≤≤,于是()20f x +>,于是()()2mf x m f x +≥即为()()()2122f x m f x f x ≥=-++,由()1f x ≤≤,得()212f x -+的最大值为13.∴实数m 的取值范围是13m ≥. 【点睛】本题考查正弦型函数的性质,解题的关键是由当()()124f x f x -=时,12x x -的最小值为3π得出23T π=,以便求出解析式,第二问得出()1f x ≤≤,将不等式化为()212m f x ≥-+.24.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==, (2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.25.(1),6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)图象见解析;(3)()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】利用二倍角和辅助角公式可化简得到()1sin 226f x x π⎛⎫=+ ⎪⎝⎭,(1)令()2262x k k Z πππ+=+∈,解方程可求得所求的取值集合;(2)利用五点法得到特殊点对应的函数值,由此可画出函数图象; (3)令()3222262k x k k Z πππππ+≤+≤+∈,解不等式求得x 的范围即可得到所求区间. 【详解】()11cos 22sin 2426f x x x x π⎛⎫==+ ⎪⎝⎭,(1)当()2262x k k Z πππ+=+∈时,()f x 取得最大值,此时()6x k k Z ππ=+∈,x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)由题意可得表格如下:(3)令()3222262k x k k Z πππππ+≤+≤+∈,解得:()263k x k k Z ππππ+≤≤+∈, ()f x ∴的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【点睛】方法点睛:求解正弦型函数()sin y A ωx φ=+的单调区间、对称轴和对称中心、最值点问题时,通常采用整体对应的方法,即令x ωϕ+整体对应sin y x =的单调区间、对称轴和对称中心、最值点即可.26.(1)T π=,最大值1,最小值-1;(2)在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增;()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上单调递减; 【分析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求()f x 的最小正周期、最大值、最小值;(2)利用()sin()f x A x ωϕ=+的性质求函数的单调区间即可. 【详解】(1)()3)2sin cos sin(2)33f x x x x x ππ=--=+,∴2||T ππω==,且最大值、最小值分别为1,-1; (2)由题意,当222232k x k πππππ-≤+≤+时,()f x 单调递增,∴51212k x k ππππ-≤≤+,k Z ∈,()f x 单调递增; 当3222232k x k πππππ+≤+≤+时,()f x 单调递减,∴71212k x k ππππ+≤≤+,k Z ∈,()f x 单调递减; 综上,当()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,()f x 单调递增; ()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,()f x 单调递减; 【点睛】关键点点睛:应用两角和差公式化简三角函数式并求最小正周期、最值;根据()sin()f x A x ωϕ=+性质确定三角函数的单调区间.。
一、选择题1.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1522.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.将函数()22sin cos 23f x x x x =+的图象向右平移π6个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的一个对称中心是( )A .π,03⎛⎫⎪⎝⎭B .(π3C .π,06⎛⎫-⎪⎝⎭D .π36⎛-⎝ 4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3D .36.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭7.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3 B .12-C .32D .128.函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6 C .4 D .29.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=10.sin34sin64cos34sin 206︒︒-︒︒的值为( ) A .12B .22C .32D .111.函数cos 2y x =的单调减区间是( ) A .ππ,π,Z 2k k k ⎡⎤+∈⎢⎥⎣⎦B .π3π2π,2π,Z 22k k k ⎡⎤++∈⎢⎥⎣⎦ C .[]2π,π2π,Z k k k +∈ D .πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦ 12.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 二、填空题13.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.在ABC 中,tan 1A =,tan 2B =,则tan C =______. 16.已知α、β均为锐角,且2sin 10α=,()25cos 5αβ+=,则cos 2β=_______________17.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 18.下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是______.①()cos2f x x =;②()sin 2f x x =;③()cos f x x =;④()sin f x x = 19.设函数2()2cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 20.已知7sin cos 5αα+=-,22sin cos 5αα-=-,则cos2=α_______.三、解答题21.已知函数()2sin 24cos cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)求函数()f x 的单调区间; (2)当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 22.如图,在ABC 中,CD AB ⊥于D ,且3BD AD =.(1)若2BCD ACD ∠=∠,求角A 的大小; (2)若1cos 3A =,求tan C 的值.23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围. 25.已知函数2()cos sin 12cos f x a x x x =⋅+-,且(0)3f f π⎛⎫-= ⎪⎝⎭. (1)求函数()y f x =的最小正周期; (2)求()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 26.如图,以Ox 为始边作角α与β(0)βαπ<<<),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的标为34,55⎛⎫- ⎪⎝⎭(1)求sin 2cos 211tan ααα+++的值;(2)若0OP OQ ⋅=,求sin()αβ+的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C3.B解析:B 【分析】首先利用二倍角公式及辅助角公式将函数()f x 化简 ,再根据三角函数的变换规则求出()g x 的解析式,最后根据正弦函数的性质求出函数的对称中心;【详解】解:()22sin cos f x x x x =+())sin 2cos21f x x x ∴=+ ()sin 2f x x x ∴=()π2sin 23f x x ⎛⎫∴=++ ⎪⎝⎭将()f x 向右平移π6个单位长度得到()g x , ()ππ2sin 263g x x ⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦()2sin 2g x x ∴=∴()g x 的对称中心为()π2k k ⎛∈ ⎝Z ,当2k =时为(π. 故选:B.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin 22y r α===-. 故选:C.6.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式.解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭. 故选:C.7.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒3=. 故选:C.8.A解析:A 【分析】根据函数图象的对称性,可知交点关于对称中心对称,即可求解. 【详解】由函数图象的平移可知,函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=. 故选:A关键点点睛:由基本初等函数及图象的平移可知1()11f x x=+-与()2sin 1g x x π=+都是关于(1,1)中心对称,因此图象交点也关于(1,1)对称,每组对称点的横坐标之和为2,由图象可知共8个交点,4组对称点.9.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题10.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒2= 故选:C .11.A解析:A 【分析】根据余弦函数的性质,令222,k x k k Z πππ≤≤+∈求解. 【详解】令222,k x k k Z πππ≤≤+∈, 解得2,2k x k k Z πππ≤≤+∈,所以函数cos 2y x =的单调减区间是ππ,π,Z2k k k ⎡⎤+∈⎢⎥⎣⎦, 故选:A12.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.二、填空题13.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++ 故答案为:3514.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+, 其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立, ∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.15.3【分析】由已知和正切和角公式求得再利用三角形的内角和公式和诱导公式可得答案【详解】中有所以所以故答案为:3解析:3 【分析】由已知和正切和角公式求得()tan +A B ,再利用三角形的内角和公式和诱导公式可得答案. 【详解】ABC 中,有++A B C π=,所以()()tan tan +tan +C A B A B π⎡⎤=-=-⎣⎦,()tan +tan 1+2tan +31tan tan 112A B A B A B ===---⨯,所以tan 3C =,故答案为:3. 16.【分析】先由题意得到求出根据由两角差的余弦公式求出再由二倍角公式即可求出结果【详解】因为均为锐角所以又所以所以则故答案为:解析:45【分析】先由题意得到,0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,求出sin 10α=,()cos αβ+=()cos cos βαβα=+-,由两角差的余弦公式,求出cos β,再由二倍角公式,即可求出结果. 【详解】因为α、β均为锐角,所以0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,又sin 10α=,()cos 5αβ+=,所以cos α==()sin αβ+==, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++51051010=+=, 则294cos 22cos 1155ββ=-=-=. 故答案为:45. 17.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③18.①【分析】利用与的关系确定①②的周期在给定区间上去掉绝对值符号后确定单调性化简和后可得其性质从而判断③④【详解】周期是时是增函数①满足题意;周期是时是减函数②不满足题意;周期是③不满足题意;不是周期解析:① 【分析】利用()f x 与()f x 的关系确定①②的周期,在给定区间上去掉绝对值符号后确定单调性,化简cos x 和sin x 后可得其性质,从而判断③④【详解】()cos2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()cos2cos2f x x x ==-是增函数,①满足题意;()sin 2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()sin 2sin 2f x x x ==是减函数,②不满足题意;()cos cos f x x x ==,周期是2π,③不满足题意; sin ,0()sin sin ,0x x f x x x x ≥⎧==⎨-<⎩不是周期函数,④不满足题意.故答案为:①. 【点睛】结论点睛:本题考查三角函数的周期性与单调性,解题时可利用如下结论:①()sin()f x A x ωϕ=+(或cos()A x ωϕ+,函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.19.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.20.【分析】联立方程组求得的值结合余弦的倍角公式即可求解【详解】由题意知:联立方程组求得所以故答案为: 解析:725【分析】联立方程组,求得sin ,cos αα的值,结合余弦的倍角公式,即可求解. 【详解】由题意知:7sin cos 5αα+=-,22sin cos 5αα-=-,联立方程组,求得34sin ,cos 55αα=-=-,所以2247cos 22cos 12()1525αα=-=⨯--=. 故答案为:725. 三、解答题21.(1)单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;单调递减区间为:2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)⎡-⎣. 【分析】(1)利用三角函数恒等变换化简函数解析式可得()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,进而根据正弦函数的单调性即可求解. (2)由题意可求范围2,663x πππ⎡⎤+∈-⎢⎥⎣⎦,利用正弦函数的性质即可求解其值域. 【详解】解:(1)()2sin 24cos cos 644f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭122cos 24(cos sin )(cos sin )2222x x x x x x ⎛⎫=-+⨯-⨯+ ⎪ ⎪⎝⎭2cos 22cos 2x x x =-+2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k Z ∈,解得36k x k ππππ-≤≤+,k Z ∈,令3222262k x k πππππ+≤+≤+,k Z ∈,解得263k x k ππππ+≤≤+,k Z ∈,故函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,单调递减区间为:2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈-⎢⎥⎣⎦,可得1sin 2262x π⎛⎫-≤+≤⎪⎝⎭,可得12sin 26x π⎛⎫-≤+≤ ⎪⎝⎭()f x 的值域为⎡-⎣.22.(1)π3A =;(2【分析】(1)设ACD θ∠=,则2BCD θ∠=,从而可得tan 23tan θθ=,利用二倍角公式正切公式即可求解.(2)根据题意可得tan 3tan A B =,由同角三角函数的基本关系可得tan A =,即tan B ()tan tan C A B =-+,利用两角和的正切公式即可求解.【详解】(1)设ACD θ∠=,则π0,2θ⎛⎫∈ ⎪⎝⎭,2BCD θ∠=, 因为tan AD CD θ=,tan 2BDCD θ=,又因为3BD AD =,所以tan 23tan θθ=,即22tan 3tan 1tan θθθ=-,所以tan θ=, 因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以π6θ=,所以π3A =. (2)因为tan CD A AD=,tan CD B BD =,3BD AD =,所以tan 3tan A B =,又因为1cos 3A =,π(0,)2A ∈,所以sin =A ,所以tan A =,tan B ,又因为()tan tan C A B =-+,所以tan tan tan 1tan tan 5A B C A B +=-=-⋅. 23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13,所以5sin 13β===-, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞. 【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 21226x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=) 25.(1)π;(2)min ()1f x =-,max ()2f x =. 【分析】(1)利用倍角公式降幂,求得()sin 2cos 22af x x x =-,再利用(0)3f f π⎛⎫-= ⎪⎝⎭,得到等量关系式,求得a = (2)由x 的范围,得到相应整体角的范围,进一步求得()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【详解】(1)2()cos sin 12cos sin 2cos 22af x a x x x x x =⋅+-=-,∵(0)3f f π⎛⎫-= ⎪⎝⎭,∴22sin cos sin 0cos 02332a aππ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭,解得a =∴()2cos 22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,∴函数()y f x =的最小正周期为22ππ=.(2)∵52,243x ππ⎡⎤∈⎢⎥⎣⎦,∴72,646x πππ⎡⎤-∈⎢⎥⎣⎦,∴[]()2sin 21,26f x x π⎛⎫=-∈- ⎪⎝⎭. ∴当7266x ππ-=,即23x π=时,min ()1f x =-,当226x ππ-=,即3x π=时,max ()2f x =.【点睛】思路点睛:该题考查的是有关三角函数的问题,解题思路如下:(1)利用正、余弦倍角公式降幂,利用条件求相应参数值,利用辅助角公式化简函数解析式;(2)利用函数的性质,得到其最小正周期;(3)根据自变量x 的范围,求得整体角的范围,结合正弦函数的性质,求得函数的最值. 26.(1)1825;(2)725. 【分析】(1)根据终边上点的坐标,利用三角函数定义得到角α的正弦值与余弦值,利用二倍角的正弦公式、二倍角法余弦公式,切化弦,把要求的式子化简,约分整理,将所求三角函数值代入求解即可;(2)以向量的数量积为0为条件,可得2παβ-=,从而可得3sin 5β=,进而得4cos 5β=,利用两角和的正弦公式可得结果. 【详解】 (1)由三角函数定义得3cos 5α=-, 4sin 5α= ∴原式()222cos sin cos 2sin cos 2cos 2cos sin sin cos 1cos cos αααααααααααα++===++2=·235⎛⎫- ⎪⎝⎭=1825(2)0OP OQ ⋅=,∴2παβ-=,∴2πβα=-,∴3sin sin cos 25πβαα⎛⎫=-=-= ⎪⎝⎭4cos cos sin 25πβαα⎛⎫=-== ⎪⎝⎭,∴()sin sin cos cos sin αβαβαβ+=+44337555525⎛⎫=⋅+-⋅= ⎪⎝⎭.。
一、选择题1.已知5π2sin63α⎛⎫+=⎪⎝⎭,则πcos23α⎛⎫-=⎪⎝⎭()A.5-B.19-C.53D.192.将函数()2sin23f x xπ⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x的图像,在()g x的图像的所有对称轴中,离原点最近的对称轴为()A.24xπ=-B.4πx=-C.524xπ=-D.12xπ=3.已知3sin5α=-,则cos2=α()A.15-B.15C.725-D.7254.已知()3sin5πα+=,则sin()cos()sin2απαπα--=⎛⎫-⎪⎝⎭()A.45-B.45C.35D.355.在ABC中,已知sin2sin()cosC B C B=+,那么ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.形状无法确定6.已知函数()()sin0,2f x A xπωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则()f x的解析式为()A.()2sin26f x xπ⎛⎫=+⎪⎝⎭B.()2sin26f x xπ⎛⎫=-⎪⎝⎭C .()sin 23f x x π⎛⎫=+ ⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭7.已知3sin 7a π=,4cos 7b π=,3tan()7c π=-,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a <<C .c b a <<D .c a b <<8.要得到函数3sin 224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数3cos 22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度9.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭10.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( )A .19B C .19-D . 11.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 12.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知()0,απ∈且tan 3α=,则cos α=______.14.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________.15.已知角θ的终边经过点(,3)P x (0x <)且cos 10x θ=,则x =___________. 16.若()5sin 4513α︒+=,则()sin 225α︒+=________. 17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .19.函数f (x )=sin 2x +sin x cos x +1的最大值是________.20.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______.三、解答题21.已知α,β为锐角,4tan 3α=,()tan 2αβ+=-. (1)求cos2α的值. (2)求()tan αβ-的值. 22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.有一展馆形状是边长为2的等边三角形ABC ,DE 把展馆分成上下两部分面积比为1:2(如图所示),其中D 在AB 上,E 在AC 上.(1)若D 是AB 中点,求AE 的值; (2)设AD x =,ED y =. ①求用x 表示y 的函数关系式;②若DE 是消防水管,为节约成本,希望它最短,DE 的位置应在哪里?24.设1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,其中,2παπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭. (1)求2βα-以及2αβ-的取值范围.(2)求cos2αβ+的值.25.如图,有一生态农庄的平面图是一个半圆形,其中直径长为2km ,C 、D 两点在半圆弧上满足AD BC =,设COB θ∠=,现要在此农庄铺设一条观光通道,观光通道由,,AB BC CD 和DA 组成.(1)若6πθ=,求观光通道l 的长度;(2)用θ表示观光通道的长l ,并求观光通道l 的最大值; 26.已知02πα<<,4sin 5α. (1)求tan α的值; (2)求cos 2sin 2παα⎛⎫++⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+ ⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A3.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.4.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-,则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C5.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .6.A解析:A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.7.C解析:C 【分析】3sin07a π=>,4cos 07b π=<,a b >且均属于()1,1-,而1c <-,大小关系即可确定. 【详解】 解:3sin 07a π=>;427πππ<<, 4cos cos cos 72πππ∴<<,即10b -<<.又正切函数在(0,)2π上单调递增,347ππ<; 3tantan 174ππ∴>=; 33tan()tan 177c ππ∴=-=-<-, 01a b c ∴>>>->,故选:C. 8.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B9.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, ∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 10.C解析:C 【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .11.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭, 故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法解析:10【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos α= 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos 10α===.【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 14.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin 2θ=,1cos 2θ=,所以,1sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-15.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为:解析:1-【分析】由余弦函数的定义可得cos10xθ==,解出即可.【详解】由余弦函数的定义可得cos10xθ==,解得0x=(舍去),或1x=(舍去),或1x=-,1x∴=-.故答案为:1-.16.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为:解析:513-【分析】直接利用诱导公式计算可得;【详解】解:因为()5sin4513α︒+=,()()()5sin225sin45180sin4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦故答案为:513-17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】由tan tan3124πππαα⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,结合tan212πα⎛⎫+=-⎪⎝⎭,利用两角和的正切公式求解.【详解】tan tan1124tan tan312431tan tan124ππαπππααππα⎛⎫++⎪⎛⎫⎛⎫⎝⎭+=++==-⎪ ⎪⎛⎫⎝⎭⎝⎭-+⎪⎝⎭,故答案为:13-18.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.19.【分析】先根据二倍角公式辅助角公式将函数化为基本三角函数再根据三角函数有界性求最值【详解】因为函数f (x )=sin2x+sinxcosx+1所以因为所以即函数的最大值为故答案为:【分析】先根据二倍角公式、辅助角公式将函数化为基本三角函数,再根据三角函数有界性求最值. 【详解】因为函数f (x )=sin 2x +sin x cos x +1,所以113()(1cos 2)sin 21)22242f x x x x π=-++=-+, 因为sin(2)14x π-≤,所以()f x ≤,,故答案为:32+ 20.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.三、解答题21.(1)725-;(2)211-.【分析】(1)利用同角三角函数的关系以及二倍角公式即可求值; (2)先求出24tan 27α=-,再利用()()tan tan 2αβααβ-=-+⎡⎤⎣⎦即可求解. 【详解】解:(1)由题意知:α为锐角,且22sin 4tan cos 3sin cos 1ααααα⎧==⎪⎨⎪+=⎩,解得:4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,229167cos 2cos sin 252525ααα∴=-=-=-; (2)由(1)知,4324sin 22sin cos 25525ααα==⨯⨯=, 则24sin 22425tan 27cos 2725ααα===--, ()()()()tan 2tan tan tan 21tan 2tan ααβαβααβααβ-+-=-+=⎡⎤⎣⎦+⋅+,()()241022775524111277----===-⎛⎫+-⨯- ⎪⎝⎭, 故()2tan 11αβ-=-. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论.23.(1)43AE =;(2)①2,23y x ⎡⎤=∈⎢⎥⎣⎦;②//DE BC . 【分析】(1)利用三角形的面积公式,得到43AD AE ⋅=,根据D 是AB 中点,即可求得AE 的长;(2)对于①中,由(1)得到4433AE AD x==,求得223x ≤≤,在ADE 中,由余弦定理,即可求得函数的解析式;②根据DE 是消防水管,结合基本不等式,即可求得x 的值,得到DE 的位置. 【详解】(1)依题意,可得211112sin 60sin 6033232ADE ABC S S AD AE ==⋅⋅⋅︒==⋅︒△△ 解得43AD AE ⋅=, 又因为D 是AB 中点,则1AD =,所以43AE =. (2)对于①中,由(1)得43AD AE ⋅=,所以4433AE AD x==, 因为2AE ≤,可得23x ≥,所以223x ≤≤, 在ADE 中,由余弦定理得2222221642cos6093y DE AD AE AD AE x x ==+-⋅⋅︒=+-,所以2,23y x ⎡⎤=∈⎢⎥⎣⎦.②如果DE 是消防水管,可得3y =≥=,当且仅当243x =,即3x =,等号成立.此时AE =,故//DE BC ,且消防水管路线最短为3DE =. 【点睛】利用基本不等式求解实际问题的解题技巧:利用基本不等式求解实际应用问题时,一定要注意变量的实际意义及其取值范围; 根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值; 在应用基本不等式求最值时,若等号取不到,可利用函数的单调性求解.24.(1)22πβαπ<-<,022απβ<-<;(2)27. 【分析】 (1)由,2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭以及不等式知识求出,24βπαπ⎛⎫-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭,再根据1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭可得,22βπαπ⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭. (2)根据cos cos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用两角差的余弦公式可求得结果.【详解】 (1),2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,,242αππ⎛⎫∴∈ ⎪⎝⎭,0,24βπ⎛⎫∈ ⎪⎝⎭,,02πβ⎛⎫-∈- ⎪⎝⎭, ,224αππ⎛⎫∴-∈-- ⎪⎝⎭,,024βπ⎛⎫-∈- ⎪⎝⎭,,24βπαπ⎛⎫∴-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭, 又1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,所以22πβαπ<-<,022απβ<-<.(2)coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又1cos 29βα⎛⎫-=- ⎪⎝⎭且,22βπαπ⎛⎫-∈ ⎪⎝⎭,sin 29βα⎛⎫∴-== ⎪⎝⎭,又2sin 23αβ⎛⎫-= ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,cos 23αβ⎛⎫∴-==⎪⎝⎭,12cos293αβ+∴=-+=【点睛】关键点点睛:将所求角拆成两个已知角进行求解是解题关键.25.(1)观光通道长(2km ;(2)当3πθ=时,观光通道长l 的最大值为5km . 【分析】 (1)由6πθ=,得6OCD ODC π∠=∠=,然后在OCD ,OCB ,OAD △利用余弦定理求出,,CD BC AD 的长,从而可得结果;(2)作OE BC ⊥,垂足为E ,在直角三角形OBE 中,sin sin22BE OB θθ==,则有2sin2BC AD θ==,同理作OF CD ⊥,垂足为F ,cos cos CF OC θθ==,即:2cos CD θ=,从而24sin2cos 2l θθ=++,然后利用三角函数的性质可得结果【详解】 (1)因为6πθ=,所以6OCD ODC π∠=∠=在OCD 中,利用余弦定理可得,2211211cos33CD π=+-⨯⨯⨯=,所以CD =同理BC AD ===所以观光通道长2l =+(2)作OE BC ⊥,垂足为E ,在直角三角形OBE 中,sin sin22BE OB θθ==,则有2sin2BC AD θ==,同理作OF CD ⊥,垂足为F ,cos cos CF OC θθ==, 即:2cos CD θ=,从而有:22124sin 2cos 4sin 4sin 44sin 522222l θθθθθ⎛⎫=++=-++=--+ ⎪⎝⎭因为02πθ⎛⎫∈ ⎪⎝⎭,,所以当3πθ=时,l 取最大值5,即观光通道长l 的最大值为5km .【点睛】关键点点睛:此题考查余弦定理的应用,解题的关键是把,,CD BC AD 用含θ的式子表示,然后利用三角恒等变换公式转化为同角的三角函数求解,解题时要注意θ的取值范围 26.(1)43;(2)825. 【分析】(1)由同角三角函数的基本关系先得cos α的值,再得tan α的值; (2)根据诱导公式以及二倍角的余弦可得结果. 【详解】 (1)因为02πα<<,4sin 5α,故3cos 5α=,所以4tan 3α=.(2)23238cos 2sin 12sin cos 1225525παααα⎛⎫++=-+=-+= ⎪⎝⎭. 【点睛】本题主要考查了通过同角三角函数的基本关系以及诱导公式求三角函数的值,属于基础题.。
人教A 版高一数学必修第一册第五章《三角函数》单元练习题卷10(共22题)一、选择题(共10题) 1. cos 2π3= ( )A . −12 B . 12C .√32D . −√322. 已知 P (−3,4) 是角 α 的终边上的点,则 sinα= ( ) A . 45B . 35C . −35D . −433. 设函数 f (x )=tan (x +φ), 命题“f (x ) 是奇函数”是“f (0)=0”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4. 已知 sin (θ+20∘)=15,则 sin (2θ−50∘) 的值为 ( )A . −2325B .2325C .4√625D . 255. 若 α+β=2π3,则 cos 2α+cos 2β 的取值范围是 ( )A . [0,12] B . [12,1]C . [12,32]D . [0,1]6. 函数 f (x )=√3sin (−x 2−π4),x ∈R 的最小正周期为 ( )A . π2B . πC . 2πD . 4π7. 函数 f (x )=cos (ωx +φ) 的部分图象如图所示,则 f (x ) 的单调递减区间为 ( )A.(kπ−14,kπ+34),k∈Z B.(2kπ−14,2kπ+34),k∈ZC.(k−14,k+34),k∈Z D.(2k−14,2k+34),k∈Z8.已知sin(α−π2)=√32(0≤α≤π),则tan(π−α)=( )A.√33B.√3C.−√33D.−√39.已知直线3x−y−1=0的倾斜角为α,则cosα−2sinαsinα+cosα的值为( )A.−1110B.−12C.−114D.−5410.已知α为第二象限角,sinα=35,则sin(α−π6)的值为( )A.4+3√310B.4−3√310C.3√3−410D.−4−3√310二、填空题(共6题)11.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.12.在平面直角坐标系xOy中,角α和角β均以Ox为始边,它们的终边关于x轴对称.若sinα=13,则sinβ=.13.角225∘属于第象限.14. 已知 sinα=45,则 cos (α+π2)= .15. 已知点 P (−3,4) 在角 α 的终边上,则 sinα= .16. 若 sinα+cosα=13,0<α<π,则 sin2α+cos2α= .三、解答题(共6题)17. 已知函数 f (x )=(1+1tanx )sin 2x −2sin (x +π4)⋅sin (x −π4).(1) 若 tanα=2,求 f (α) 的值. (2) 若 x ∈[π12,π2),求函数 f (x ) 的值域.18. 设 α 是三角形的一个内角,在 sinα,cosα,tanα 中,哪些有可能是负值?19. 求下列三角函数化为 0∼π4 角的三角函数.(1) cos π3; (2) sin 3π5.20. 已知 −π<x <0,且 cos (π2+x)−cosx =−15.(1) 求 sinx −cosx 的值; (2) 求 tanx 的值.21. 航海罗盘将圆周 32 等分.如图所示,把其中每一份所对圆心角的大小分别用角度和弧度表示出来.22. 已知 cosα=45,α∈(−π2,0).求:(1) cos2α 的值. (2) sin (α−π3) 的值.答案一、选择题(共10题)1. 【答案】A【知识点】任意角的三角函数定义2. 【答案】A【解析】因为P(−3,4)为角α终边上的一点,所以x=−3,y=4,r=√(−3)2+42=5,所以sinα=yr =45.【知识点】任意角的三角函数定义3. 【答案】B【解析】因为函数f(x)=tan(x+φ),由条件:“f(0)=0”,所以函数的图象关于原点对称,函数是一个奇函数,当函数是一个奇函数时,函数在原点处不一定有定义,所以不一定存在f(0)=0,所以命题“f(x)是奇函数”是“f(0)=0”的必要不充分条件,故选:B.【知识点】Asin(ωx+ψ)形式函数的性质、充分条件与必要条件4. 【答案】A【解析】sin(2θ−50∘)=sin[(2θ+40∘)−90∘]=−cos(2θ+40∘)=2sin2(θ+20∘)−1=−2325.【知识点】二倍角公式5. 【答案】C【解析】cos2α+cos2β=1+cos2α2+1+cos2β2=1+12(cos2α+cos2β)=1+cos2α+2β2⋅cos2α−2β2=1+cos(α+β)⋅cos(α−β)=1+cos2π3⋅cos(α−β)=1−12cos(α−β).因为cos(α−β)∈[−1,1],所以cos2α+cos2β∈[12,32 ].【知识点】二倍角公式、余弦函数的性质6. 【答案】D【知识点】Asin(ωx+ψ)形式函数的性质7. 【答案】D【解析】方法一:由图象知,函数f(x)的最小正周期T=(54−14)×2=2,所以ω=π.因为(14,0)可以看作是五点作图法中的第二点,所以π4+φ=π2,解得φ=π4,所以f(x)=cos(πx+π4).由2kπ<πx+π4<2kπ+π,k∈Z,解得2k−14<x<2k+34,k∈Z,所以函数f(x)的单调递减区间为(2k−14,2k+34),k∈Z.方法二:注意到函数的周期为2,且取得最小值时的x=34,则函数的一个单调递减区间为(34−1,34),即(−14,34),于是函数的单调递减区间为(2k−14,2k+34),k∈Z.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】A【解析】因为0≤α≤π,可得−π2≤α−π2≤π2,又sin(α−π2)=√32,所以α=5π6,所以tan(π−α)=tanπ6=√33.故选:A.9. 【答案】D【知识点】同角三角函数的基本关系10. 【答案】A【解析】因为 sinα=35,α 为第二象限角,所以 cosα=−45,所以sin (α−π6)=sinαcos π6−cosαsinπ6=35×√32+45×12=3√3+410,故选A .【知识点】两角和与差的正弦二、填空题(共6题) 11. 【答案】 −12【解析】因为 sinα+cosβ=1,cosα+sinβ=0, 所以 (1−sinα)2+(−cosα)2=1, 所以 sinα=12,cosβ=12, 因此sin (α+β)=sinαcosβ+cosαsinβ=12×12−cos 2α=14−1+sin 2α=14−1+14=−12.【知识点】两角和与差的正弦12. 【答案】 −13【解析】因为在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 x 轴对称,所以 sinβ=sin (−α)=−sinα=−13.13. 【答案】三【知识点】任意角的概念14. 【答案】 −45【知识点】诱导公式15. 【答案】 45【知识点】任意角的三角函数定义16. 【答案】 −8+√179【解析】由 sinα+cosα=13,两边平方, 得 sin 2α+cos 2α+2sinαcosα=19,所以 2sinαcosα=sin2α=−89, 因为 α∈(0,π),所以 α∈(π2,π),结合 sinα+cosα=13>0,可得 α∈(π2,3π4),则 2α∈(π,3π2),所以 cos2α=−√1−(−89)2=−√179. 所以 sin2α+cos2α=−89+(−√179)=−8+√179.【知识点】二倍角公式三、解答题(共6题) 17. 【答案】(1)f (x )=(sin 2x +sinxcosx )+2sin (x +π4)cos (x +π4)=1−cos2x 2+12sin2x +sin (2x +π2)=12+12(sin2x −cos2x )+cos2x =12(sin2x +cos2x )+12.由 tanα=2,得 sin2α=2sinαcosαsin 2α+cos 2α=2tanαtan 2α+1=45,cos2α=cos2α−sin2αsin2α+cos2α=1−tan2α1+tan2α=−35.所以f(α)=12(sin2α+cos2α)+12=35.(2) 由(1),得f(x)=12(sin2x+cos2x)+12=√22sin(2x+π4)+12.由x∈[π12,π2),得2x+π4∈[5π12,5π4),所以−√22<sin(2x+π4)≤1,所以0<f(x)≤√2+12,所以函数f(x)的值域是(0,√2+12].【知识点】二倍角公式、Asin(ωx+ψ)形式函数的性质18. 【答案】因为α∈(0,π),所以cosα和tanα可能为负值.【知识点】任意角的三角函数定义19. 【答案】(1) sinπ6.(2) cosπ10.【知识点】诱导公式20. 【答案】(1) 由已知,得sinx+cosx=15,两边平方得sin2x+2sinxcosx+cos2x=125,整理得2sinxcosx=−2425.因为(sinx−cosx)2=1−2sinxcosx=4925,由−π<x<0知,sinx<0,又sinxcosx=−1225<0,所以cosx>0,所以sinx−cosx<0,故sinx−cosx=−75.(2) 故此 sinx =−35,cosx =45, 所以 tanx =−34.【知识点】同角三角函数的基本关系21. 【答案】 11.25∘,π16.【知识点】弧度制22. 【答案】(1) cos2α=2cos 2α−1=2×(45)2−1=725. (2) 因为 α∈(−π2,0), 所以 sinα=−35, 所以 sin (α−π3)=12sinα−√32cosα=12×(−35)−√32×45=−3+4√310. 【知识点】二倍角公式、两角和与差的正弦。
一、选择题1.已知5π2sin63α⎛⎫+=⎪⎝⎭,则πcos23α⎛⎫-=⎪⎝⎭()A.5-B.19-C.53D .192.将函数()2sin23f x xπ⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x的图像,在()g x的图像的所有对称轴中,离原点最近的对称轴为()A.24xπ=-B.4πx=-C.524xπ=-D.12xπ=3.已知()3sin5πα+=,则sin()cos()sin2απαπα--=⎛⎫-⎪⎝⎭()A.45-B.45C.35D.354.在ABC中,已知sin2sin()cosC B C B=+,那么ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.形状无法确定5.函数()[sin()cos()]f x A x xωθωθ=+++部分图象如图所示,当[,2]xππ∈-时()f x 最小值为()A.1-B.2-C.2-D.3-6.如果角α的终边过点2sin30,2cos3()P-,则sinα的值等于()A.12B.12-C.3D.37.已知3sin7aπ=,4cos7bπ=,3tan()7cπ=-,则a,b,c的大小关系为()A.a b c<<B.b c a<<C.c b a<<D.c a b<<8.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 9.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭10.已知1sin cos 3αα+=,则sin 2α的值是( ). A .89B .89-C 17D .17 11.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-12.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 二、填空题13.设函数()sin (0,0)6f x A x A πωω⎛⎫=->> ⎪⎝⎭,[]0,2x π∈,若()f x 恰有4个零点,则下述结论中:①0()()f x f x ≥恒成立,则0x 的值有且仅有2个;②存在0>ω,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增;③方程1()2f x A =一定有4个实数根,其中真命题的序号为_________.14.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 15.已知()tan 3πα+=,则2tan 2sin αα-的值为_______.16.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 17.若函数cos()y x ϕ=+为奇函数,则最小的正数ϕ=_____; 18.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________. 19.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________. 20.若3sin 5αα=,是第二象限角,则sin 24πα⎛⎫+= ⎪⎝⎭__________.三、解答题21.已知函数2()2sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 22.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=. (1)求sin 6απ⎛⎫+⎪⎝⎭的值; (2)求cos 23πα⎛⎫+⎪⎝⎭的值.23.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值; (3)若,2παπ⎛⎫∈⎪⎝⎭,且2()f α=,求α的值. 24.已知02a π<<,02πβ<<,4sin 5α,5cos()13αβ+=. (1)求cos β的值;(2)求2sin sin 2cos 21ααα+-的值.25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.已知函数()()sin f x A x =+ωϕ,其中0A >,0>ω,22ππϕ-<<,x ∈R ,其部分图象如图所示.(1)求函数()y f x =的解析式;(2)已知函数()()cos g x f x x =,求函数()g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A3.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C4.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .5.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D6.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可.【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.7.C解析:C 【分析】3sin07a π=>,4cos 07b π=<,a b >且均属于()1,1-,而1c <-,大小关系即可确定. 【详解】 解:3sin7a π=>;427πππ<<, 4cos coscos 72πππ∴<<,即10b -<<. 又正切函数在(0,)2π上单调递增,347ππ<; 3tantan 174ππ∴>=; 33tan()tan 177c ππ∴=-=-<-, 01a b c ∴>>>->,故选:C. 8.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意, 取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.9.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, ∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 10.B解析:B 【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果. 【详解】∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=, ∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B11.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 12.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.二、填空题13.①②③【分析】可把中的整体当作来分析结合三角函数的图象与性质即可得解【详解】由于恰有4个零点令由有4个解则解得①即由上述知故的值有且仅有个正确;②当时当时解得又故存在使得在上单调递增正确;③而所以可解析:①②③ 【分析】可把sin()y A x ωθ=+中的x ωθ+整体当作t 来分析,结合三角函数的图象与性质即可得解. 【详解】由于()f x 恰有4个零点,令6t x πω=-,266t ππωπ⎡⎤∈--⎢⎥⎣⎦,,由sin 0t =有4个解,则3246x ππωπ≤-<,解得19251212ω≤<, ①()0f x A =即0262ππωx k π-=+,由上述知0,1k =, 故0x 的值有且仅有2个,正确; ②当0x =时,66ππωx -=-,当819πx =时,81962πππω⋅-≤,解得1912ω≤, 又19251212ω≤<,故存在1912ω=,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增,正确; ③11()sin 262f x A x πω⎛⎫=⇒-= ⎪⎝⎭,而2[3,4)6ππωππ-∈, 所以6x πω-可取51317,,,6666ππππ,共4个解,正确,综上,真命题的序号是①②③. 故答案为:①②③. 【点睛】三角函数的性质分析一般用数形结合,图象的简化十分重要。
一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( )A .sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 23y x π⎛⎫=+ ⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭3.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425-B .725C .2425D .725-4.已知一个扇形的半径与弧长相等,且扇形的面积为22cm ,则该扇形的周长为( ) A .6cmB .3cmC .12cmD .8cm5.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( )A .12B .12-C .D .6.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=7.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()0f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x 的最小正周期为π4.则上述说法正确的序号为( ) A .①④B .③④C .①②④D .①③④8.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭9.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-10.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3511.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( )A .310-B .310C .35D .35二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________.15.已知角θ的终边经过点(,3)P x (0x <)且cos 10x θ=,则x =___________.16.若sin 2θ=,,2πθπ⎛⎫∈ ⎪⎝⎭则cos 6πθ⎛⎫-= ⎪⎝⎭______. 17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______. 19.函数f (x )=sin 2x +sin x cos x +1的最大值是________. 20.已知tan 2α=,则cos2=α__.三、解答题21.已知函数()sin 1f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.已知m ∈R ,函数2222()1sin cos (2)|sin |33f x x x m x =++-+.(1)若0m =,求()f x 的最大值; (2)若()f x 在02x π≤≤时的最小值为12,求m 的值.23.已知函数()()2cos cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分. 24.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域. 25.设函数22()cos 2cos 32x f x x π⎛⎫=++ ⎪⎝⎭. (1)求3f π⎛⎫⎪⎝⎭的值; (2)求()f x 的最小值及()f x 取最小值时x 的集合; (3)求()f x 的单调递增区间. 26.已知02πα<<,4sin 5α. (1)求tan α的值; (2)求cos 2sin 2παα⎛⎫++⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .3.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.4.A解析:A 【分析】由题意利用扇形的面积公式可得2122R =,解得R 的值,即可得解扇形的周长的值.【详解】解:设扇形的半径为Rcm ,则弧长l Rcm =,又因为扇形的面积为22cm , 所以2122R =,解得2R cm =, 故扇形的周长为6cm . 故选:A .5.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.6.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题7.D解析:D 【分析】根据()03f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】对于①:由()0f =知2tan ϕ=,即tan ϕ=π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④. 故选:D .8.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭,所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<, 所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.9.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 10.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+ ⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos 10x θ==,解出即可. 【详解】由余弦函数的定义可得cos 10x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.16.0【分析】先求出再利用差角的余弦公式求解【详解】因为所以所以故答案为:0解析:0 【分析】 先求出1cos 2θ=-,再利用差角的余弦公式求解. 【详解】因为sin 2θ=,,2πθπ⎛⎫∈ ⎪⎝⎭, 所以1cos 2θ=-,所以11cos 062222πθ⎛⎫-=-⨯+= ⎪⎝⎭. 故答案为:0 17.【分析】由结合利用两角和的正切公式求解【详解】故答案为: 解析:13- 【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解.【详解】 tan tan 1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭, 故答案为:13- 18.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35 【分析】 利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可【详解】 由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 19.【分析】先根据二倍角公式辅助角公式将函数化为基本三角函数再根据三角函数有界性求最值【详解】因为函数f (x )=sin2x+sinxcosx+1所以因为所以即函数的最大值为故答案为:【分析】先根据二倍角公式、辅助角公式将函数化为基本三角函数,再根据三角函数有界性求最值.【详解】因为函数f (x )=sin 2x +sin x cos x +1,所以113()(1cos 2)sin 21)22242f x x x x π=-++=-+, 因为sin(2)14x π-≤,所以()f x ≤,,故答案为:32+ 20.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为: 解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解.【详解】 由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤. 【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出; (Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解.【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++, 由()=2sin()113f παα++=,得sin(+)03πα=, 又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或 5252633x πππ≤+≤, ∴24x ππ-≤≤-,或 122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】 关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解. 22.(1)2;(2)12±. 【分析】 (1)先代入0m =,然后对sin x 正负讨论,化简出函数解析式,然后再求出最大值即可,(2)根据x 的范围即可化简函数解析式,然后再根据x 的范围即可判断函数什么时候取得最小值,进而可以求出m 的值.【详解】 解:(1)0m =,则函数222()1sin cos |sin |33f x x x x =++-, 当sin [0x ∈,1]时,2()1cos f x x =+,当cos 1x =时,max ()2f x =,当sin [1x ∈-,0)时,2244()1sin cos 1sin 1sin 33f x x x x x =++=++- 2222(sin )239x =--+, 所以当sin 0x =时,max ()2f x =,综上,函数()f x 的最大值为2;(2)当02x π时,2222()1sin cos (2)sin 33f x x x m x =++-+ 222212sin cos sin 2sin 2m x x x m x =-+=--+224(sin )2x m m =-+++,所以当sin 1x =时,2min 1()212f x m =-+=, 所以214m =,即12m =±, 故m 的值为12±. 【点睛】 关键点点睛:本题考查了三角函数求最值以及含参数求最小值的问题考查了学生的运算能力,属于基础题.解题关键是对sin x 按正负分类讨论,去掉绝对值符号后利用三角函数性质求最值.23.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-. 【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求; 若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求.【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+ 令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=, 所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时, ()f x 取得最小值,且最小值为()12f π=-, 所以1m ≤-【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题.24.(1)()2sin()44f x x ππ=+,[]8 1.85,k k k Z ++∈;(2)(2⎤⎦. 【分析】(1)由图可求出()2sin()44f x x ππ=+,令322()2442k x k k Z ππππππ+≤+≤+∈,即可求出单调递减区间;(2)由题可得5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,则可求得值域. 【详解】(1)由题图,知2,7(1)8A T ==--=, 所以2284T πππω===, 所以()2sin()4f x x πφ=+.将点(-1,0)代入,得2sin()04πφ-+=.因为||2πφ<,所以4πφ=, 所以()2sin()44f x x ππ=+. 令322()2442k x k k Z ππππππ+≤+≤+∈, 得8185()k x k k Z +≤≤+∈. 所以()f x 的单调递减区间为[]8 1.85,k k k Z ++∈.(2)当1,43x ⎛⎫∈ ⎪⎝⎭时,5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,此时sin()1244x ππ-<+≤,则()2f x <≤,即()f x 的值域为(2⎤⎦.【点睛】方法点睛:根据三角函数()sin()f x A x ωϕ=+部分图象求解析式的方法:(1)根据图象的最值可求出A ;(2)求出函数的周期,利用2T πω=求出ω; (3)取点代入函数可求得ϕ.25.(1)12;(2)min ()0f x =,22,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭;(3)单调递增区间为252,2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】(1)利用两角和的余弦公式,二倍角公式以及两角差的正弦公式化简函数解析式可得()1sin()6f x x π=--,代入3x π=,即可计算得解. (2)由(1)利用正弦函数的性质即可求解.(3)利用正弦函数的单调性即可求解.【详解】解:(1)2211()cos()2cos cos cos 1cos 11sin()32226x f x x x x x x x x ππ=++=-++=+=--, 所以1()1sin()3362f πππ=--=. (2)由于()sin()16f x x π=--+,所以当sin()16x π-=时,()0min f x =,此时2,62x k k z πππ-=+∈,所以()f x 取最小值时x 的集合为2|2,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭, 故()f x 的最小值为0,()f x 取最小值时x 的集合为2|2,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭. (3)令322262k x k πππππ+≤-≤+,k Z ∈,解得252233k x k ππππ+≤≤+,k Z ∈,所以()f x 的单调递增区间为25[2,2]33k k ππππ++,()k z ∈. 【点睛】本题主要考查了两角和的余弦公式,二倍角公式、两角差的正弦公式以及正弦函数的图象和性质,考查了转化思想和函数思想的应用,属于中档题.26.(1)43;(2)825. 【分析】(1)由同角三角函数的基本关系先得cos α的值,再得tan α的值;(2)根据诱导公式以及二倍角的余弦可得结果.【详解】(1)因为02πα<<,4sin 5α,故3cos 5α=,所以4tan 3α=. (2)23238cos 2sin 12sin cos 1225525παααα⎛⎫++=-+=-+=⎪⎝⎭. 【点睛】 本题主要考查了通过同角三角函数的基本关系以及诱导公式求三角函数的值,属于基础题.。
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 3.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7254.已知函数()22sin cos cos f x x x x x =+-,x ∈R ,则( ) A .()f x 的最大值为1 B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点5.化简求值1tan12tan 72tan12tan 72+-( )A .B .CD 6.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( )A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦7.将函数()f x 的图象向左平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3πC .4π D .6π8.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .22C .3 D .19.已知1cos 2α=,322παπ<<,则sin(2)πα-=( ) A .3-B .12C .12-D .3210.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭11.在ABC 中,2,6AB C π==,则3AC BC 的最大值为( )A .57B .7C .37D .2712.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.求值tan 2010︒=_______. 16.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______. 17.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 18.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .19.已知1cos 3α=-,则|sin |α=___________ 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间. 22.已知函数31()2cos 24f x x x =+ (1)求()f x 的最小正周期; (2)求()f x 在区间50,12π⎡⎤⎢⎥⎣⎦上的值域. 23.已知()()()()1122,,,A x f x B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,3P ,当()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式;(2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,不等式()()2mf x m f x +≥恒成立,求实数m 的取值范围. 24.已知()sin (sin 3cos )f x x x x =-,ABC ∆中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若3()2f A =,2a =,求ABC ∆周长的最大值 25.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 26.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 A.根据332()f x x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断.【详解】 A. 332()f x x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确; B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误.故选:D3.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-,所以297cos 212sin 122525αα=-=-⨯=. 故选:D.4.B解析:B 【分析】利用二倍角公式和辅助角公式化简()f x ,再利用三角函数的性质求解即可. 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错.故选:B 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.5.A解析:A 【分析】逆用两角差的正切公式先求出tan12tan 721tan12tan 72-+,即可求解.【详解】 因为()tan 1272-tan12tan 721tan12tan 72-=+()tan 60=-=-所以()1tan12tan 721tan12tan 72tan 60+===--.故选:A6.B解析:B【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.7.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫ ⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值,所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.8.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .9.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin 2α==-,所以sin(2)sin παα-=-=. 故选:D .10.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭,所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.11.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC+4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin cos 2B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 06πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.12.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12- 【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值.【详解】解:()sin 2cos2)f x x a x x ϕ=+=+, 其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立, ∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==, 故答案为:1.【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键. 15.【分析】根据诱导公式化为锐角后可求得结果【详解】故答案为:【分析】根据诱导公式化为锐角后可求得结果.【详解】tan 2010tan(5360210)=⨯+tan 210=3tan(18030)tan 303=+==。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)一、单选题 1.把85π化为角度是( ) A .270°B .280°C .288°D .318°2.由函数cos 2y x =的图象,变换得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,这个变换可以是( ) A .向左平移6π B .向右平移6π C .向左平移3π D .向右平移3π 3.已知,αβ为锐角,且cos α=10,cos β=5,则αβ+的值是( )A .23π B .34πC .4π D .3π 4.在ABC 中,()()sin sin A B A B +=-,则ABC 一定是( ) A .等腰三角形 B .等边三角形C .直角三角形D .锐角三角形5.设 ,,,,则下列不等式正确的是 A .B .C .D .6.已知sin cos 1αα+=,则sin 2α的值为( ) A .-1B .0C .1D .227.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos α= ,则cos 6πα⎛⎫+ ⎪⎝⎭等于( ) A .1626-B .616-C .16 26-+D .616-+8.已知函数()()sin 202A x f x A πϕϕ⎛⎫=+≠< ⎪⎝⎭,,若23x π=是()f x 图象的一条对称轴的方程,则下列说法正确的是( ) A .()f x 图象的一个对称中心5012π⎛⎫⎪⎝⎭, B .()f x 在36ππ⎡⎤-⎢⎥⎣⎦,上是减函数 C .()f x 的图象过点102⎛⎫ ⎪⎝⎭,D .()f x 的最大值是A9.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦10.为了得到函数sin(2)4y x π=-的图象,可以将函数sin 2y x =的图象( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移8π个单位长度 D .向右平移8π个单位长度11.函数()sin 22f x x x =+的对称中心坐标为( )A .,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭ B .,0()62k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .,0()6k k Z ππ⎛⎫-+∈ ⎪⎝⎭ D .,0()6k k Z ππ⎛⎫+∈⎪⎝⎭12.下列函数中,既是偶函数,又在(0,)+∞上单调递减的是( ). A .y x =- B .cos y x =C .23y x =D .2y x =-第II 卷(非选择题)二、填空题13.若函数2tan tan ||4y x a x x π⎛⎫=-≤ ⎪⎝⎭的最小值为-6,则实数a 的值为________.14.已知函数()sin f x a x x =图象的一条对称轴为直线76x π=,若函数7()()5F x f x =-在7,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点依次记为1x ,2x ,3x ,…,n x ,则12n x x x +++=___________. 15.若方程3sin 265x π⎛⎫-= ⎪⎝⎭在(0,)π上的解为12x x 、,且12x x >,则()12sin x x -=________.16.若4sin()5πα+=-,则cos2α的值为________.三、解答题17.已知02ω<<,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭,且()2f x f x π⎛⎫=-⎪⎝⎭. (1)求()f x 的最小正周期;(2)若()f x 在[],t t -上单调递增,求t 的最大值.18.求函数()2sin(2)3f x x π=+单调增区间19.已知πcos(2π)sin(π)sin 2()sin(2π)3πcos(π)cos 2f ααααααα⎛⎫+⋅-⋅+ ⎪⎝⎭=+-⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()5f α=,求11sin cos αα-的值.20.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值322,当23x π=时,()f x 取得最小值2-.(1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.21.如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放.已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE θ∠=,总造价为W 元.(1)试将W 表示为θ的函数()W θ,并写出的取值范围;(2)如何选取点M 的位置,能使总造价W 最小.22.已知函数()2cos 3cos )1f x x x x =+-.(1)求函数()f x 的最小正周期并用五点作图法画出函数()y f x =在区间[0,]π上的图象; (2)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 的解析式,并求当2[,]123x ππ∈-时,函数()g x 的最小值及此时的x 值.23.设函数()2222,3f x cos x cos x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求函数()f x 的最小正周期和单调增区间; (2)将函数()f x 的图象向右平移3π个单位长度后得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.24.已知角α的终边在第二象限,且与单位圆交于点15(,4P m . (1)求实数m 的值;(2)求sin()23tan()cos()2παππαα-+--的值.25.已知()2sin3cos sin 1222x x x f x ⎛⎫=-+ ⎪⎝⎭(1)若π2π,63x ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域;(2)在ΔABC 中,A 为BC 边所对内角,若()1,1,f A BC ==求·AB AC 的最大值.参考答案1.C2.B3.B4.C5.B6.B7.A8.A9.D10.D11.A12.D 13.-7或714.143π15.4516.725-17.(1)2π;(2)4π. 18.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 19.(1)cos sin αα-;(2)210. 20.(1)()22sin 262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)6,2a ⎡⎤∈⎢⎥⎣ 21.(1)2016cos ()216(),sin 2W a a θπθθθ-=⋅+-(2)43AM =22.(1)π,图象见解析;(2)()2sin 26g x x π⎛⎫=- ⎪⎝⎭,最小值-312x π=-时取到. 23.(1)π,5[,],36k k k Z ππππ++∈;(2)1[,2]2. 24.(1)14m =-;(2)1525. (1)[]1,2.(2)12.。
一、选择题1.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 3.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦ D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦4.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .125.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-6.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭7.cos75cos15sin75sin15︒⋅︒+︒⋅︒的值是( ) A .0B .12C .32D .18.如果函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,那么θ的最小值为( )A .6π B .4π C .3πD .2π 9.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C 3D .1210.设1cos 3x =-,则cos2x =( ) A .13B .223C .79D .79-11.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 12.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.若tan 4α=,则2cos 2sin 2αα+= ________. 15.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 16.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.17.下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是______.①()cos2f x x =;②()sin 2f x x =;③()cos f x x =;④()sin f x x = 18.函数f (x )=sin 2x +sin x cos x +1的最大值是________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数2()2cos )f x x x =--.(1)求4f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期; (2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.23.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围. 25.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能同时....满足下列三个条件中的两个:①图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭;②函数()f x 的图象可由4y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③若对任意x ∈R ,()()()12f x f x f x ≤≤恒成立,且12x x -的最小值为2π. (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x -=在区间[],ππ-上所有解的和. 26.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.【详解】函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω, 故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间2.D解析:D利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确; B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确;D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D3.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.4.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解.由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.5.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D6.A解析:A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.7.B解析:B 【分析】由两角和的余弦公式化简计算. 【详解】原式=1cos(7515)cos 602︒-︒=︒=. 故选:B .8.A解析:A 【分析】利用余弦函数的对称轴以及整体思想可得:θ的表达式,进而得到θ的最小值. 【详解】由题意函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,则有 1,32k πθπ⋅+=解得 θ=k π6π-,k ∈Z , 所以由此得|θmin 6π=.故选:A . 【点睛】方法点睛:求正余弦函数的对称轴及对称中心一般利用整体思想求解9.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.10.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-, 故答案为: -14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 16.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-17.①【分析】利用与的关系确定①②的周期在给定区间上去掉绝对值符号后确定单调性化简和后可得其性质从而判断③④【详解】周期是时是增函数①满足题意;周期是时是减函数②不满足题意;周期是③不满足题意;不是周期解析:① 【分析】利用()f x 与()f x 的关系确定①②的周期,在给定区间上去掉绝对值符号后确定单调性,化简cos x 和sin x 后可得其性质,从而判断③④【详解】()cos2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()cos2cos2f x x x ==-是增函数,①满足题意;()sin 2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()sin 2sin 2f x x x ==是减函数,②不满足题意;()cos cos f x x x ==,周期是2π,③不满足题意; sin ,0()sin sin ,0x x f x x x x ≥⎧==⎨-<⎩不是周期函数,④不满足题意.故答案为:①. 【点睛】结论点睛:本题考查三角函数的周期性与单调性,解题时可利用如下结论:①()sin()f x A x ωϕ=+(或cos()A x ωϕ+,函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.18.【分析】先根据二倍角公式辅助角公式将函数化为基本三角函数再根据三角函数有界性求最值【详解】因为函数f (x )=sin2x+sinxcosx+1所以因为所以即函数的最大值为故答案为:【分析】先根据二倍角公式、辅助角公式将函数化为基本三角函数,再根据三角函数有界性求最值. 【详解】因为函数f (x )=sin 2x +sin x cos x +1,所以113()(1cos 2)sin 21)2242f x x x x π=-++=-+, 因为sin(2)14x π-≤,所以3()2f x +≤,即函数的最大值为32+,故答案为:32+ 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图解析:2【分析】把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值.【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈,所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.22.(1π;(2)最小值1-;最大值2. 【分析】(1)由二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质求得周期; (2)求得26x π+的范围后,由正弦函数性质得最值.【详解】(1)因为2()2cos )f x x x =--()2223sin cos cos x x x x =-+-()22212sin212sin 2x x x x =-+=-cos 222sin 26x x x π⎛⎫==+ ⎪⎝⎭所以22sin 22sin 4463f ππππ⎛⎫⎛⎫=⋅+==⎪ ⎪⎝⎭⎝⎭所以()f x 的周期为22||2T πππω===. (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,252,,2,33666x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦所以当6x π=-时,函数取得最小值16f π⎛⎫-=- ⎪⎝⎭.当6x π=时,函数取得最大值26f π⎛⎫=⎪⎝⎭. 【点睛】关键点点睛:本题考查求三角函数的周期,最值.解题方法是利用二倍角公式,诱导公式,两角和与差的正弦(或余弦)公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞.【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 2126x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan b aϕ=) 25.(1)①③,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)3π-. 【分析】(1)由题意分析出①②矛盾,可知③满足题意,由③可得出函数()f x 的最小正周期为π,可求得2ω=,可说明②不符合条件,进而可知符号题意的条件序号为①③,可得出2A =,由此可得出函数()f x 的解析式; (2)由()10f x -=可得1sin 262x π⎛⎫+= ⎪⎝⎭,解得()x k k Z π=∈或()3x k k Z ππ=+∈,再由[],x ππ∈-可求得结果.【详解】(1)函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③; 理由如下:由题意可知条件①②互相矛盾,故③为函数()sin 6f x A x πω⎛⎫=+ ⎪⎝⎭满足的条件之一,由③可知,函数()f x 的最小正周期为T π=,所以2ω=,故②不合题意,所以函数()sin 6f x A x πω⎛⎫=+ ⎪⎝⎭满足的条件为①③;由①可知2A =,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)因为()10f x -=,所以1sin 262x π⎛⎫+= ⎪⎝⎭, 所以()2266x k k Z πππ+=+∈或()52266x k k Z πππ+=+∈, 所以()x k k Z π=∈或()3x k k Z ππ=+∈又因为[],x ππ∈-,所以x 的取值为π-、23π-、0、3π、π, 所以方程()10f x -=在区间[],ππ-上所有的解的和为3π-. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的基本性质求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.26.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可.(2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.。
一、选择题1.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( ) A.B .19-CD .193.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .34.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A. B .12-CD .125.化简求值1tan12tan 72tan12tan 72+-()A .B .CD 6.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=7.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-28.下面函数中最小正周期为π的是( ).A .cos y x =B .π2sin 3y x ⎛⎫=- ⎪⎝⎭C .tan2xy = D .22cos sin 2y x x =+9.已知将向量13,22a ⎛⎫= ⎪ ⎪⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .6262,44⎛⎫-+ ⎪ ⎪⎝⎭ B .6262,44⎛⎫+- ⎪ ⎪⎝⎭ C .2662,44⎛⎫-+ ⎪ ⎪⎝⎭D .2626,⎛⎫+- ⎪ ⎪⎝⎭10.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭11.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110012.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图像( ) A .向左平移12π个单位 B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 二、填空题13.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.14.已知函数()()sin cos 0f x x x ωωω=+>,若()f x 在()π,π-上有且只有3个零点,则ω的取值范围为______. 15.若1cos()2αβ-=,3cos()5αβ+=-,则tan tan αβ=__________. 16.下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是______.①()cos2f x x =;②()sin 2f x x =;③()cos f x x =;④()sin f x x = 17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______. 18.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.19.已知tan 2α=,则cos 22πα⎛⎫-= ⎪⎝⎭___________. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 三、解答题21.某高档小区有一个池塘,其形状为直角ABC ,90C ∠=︒,2AB =百米,1BC =百米,现准备养一批观赏鱼供小区居民观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供居民观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC +的长; (2)若分别在AB ,BC ,CA 上取点D ,E ,F ,建造DEF 连廊供居民观赏,如图②,使得DEF 为正三角形,求DEF 连廊长的最小值.22.已知函数()()30,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 23.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=.(1)求sin 6απ⎛⎫+⎪⎝⎭的值; (2)求cos 23πα⎛⎫+⎪⎝⎭的值. 24.已知函数()(cos sin )cos f x x x x =+⋅. (1)求函数()f x 的最小正周期T ; (2)当,44x ππ⎡⎫∈-⎪⎢⎣⎭时,求函数()f x 的值域. 25.设1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,其中,2παπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭. (1)求2βα-以及2αβ-的取值范围.(2)求cos2αβ+的值.26.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω, 故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项.由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.A解析:A 【分析】逆用两角差的正切公式先求出tan12tan 721tan12tan 72-+,即可求解.【详解】 因为()tan 1272-tan12tan 721tan12tan 72-=+()tan 60=-=-所以()1tan12tan 721tan12tan 723tan 60+===---.故选:A6.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题7.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.8.D解析:D 【分析】根据三角函数的周期公式结合图象对选项进行逐一判断,可得答案.【详解】()cos cos x x -=,cos cos y x x ∴==,周期为2π,故A 不符合题意; π2sin 3y x ⎛⎫=- ⎪⎝⎭的周期为2π,故B 不符合题意;画出函数tan2x y =的图象,易得函数tan 2xy =的周期为2π,故C 不符合题意; 2π2cos sin 2cos 21sin 22sin 214x x x x x ⎛⎫+=++=++ ⎪⎝⎭,周期为π,故D 符合题意. 故选:D9.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,2a ⎛= ⎝⎭可得32tan 312θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b = 因为726sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭, 726coscos cos cos sin sin 12434343x πππππππ-⎛⎫==+=⨯-⨯=⎪⎝⎭故2b ⎛-=⎝⎭, 故选:C.10.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<, 所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.11.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】 因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.12.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.二、填空题13.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1214.【分析】利用辅助角公式对进行化简得令解得故即可解得答案【详解】解:令解得的零点为:……若在上有且只有3个零点则需满足解得:故答案为:【点睛】关键点点睛:本题解题的关键是:将的解析式利用辅助角公式化为 解析:5744ω<≤ 【分析】利用辅助角公式对()sin cos f x x x ωω=+进行化简,得()4f x x πω⎛⎫=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈,故37449544πππωωπππωω<≤-≤-<-⎧⎨⎩,即可解得答案. 【详解】 解:()sin cos f x x x ωω=+,()4f x x πω⎛⎫∴=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈, ()f x ∴的零点为:…,94πω-,54πω-,4πω-,34πω,74πω,…若()f x 在()π,π-上有且只有3个零点,则需满足37449544πππωωπππωω<≤-≤-<-⎧⎨⎩, 解得:5744ω<≤. 故答案为:5744ω<≤. 【点睛】关键点点睛:本题解题的关键是:将()f x 的解析式利用辅助角公式化为()sin y A ωx φ=+的形式,或者()cos y A x ωϕ=+,再结合正余弦函数的图象计算即可. 15.【分析】由已知利用两角和与差的余弦公式可求的值进而根据同角三角函数基本关系式即可求解【详解】解:因为所以因为所以所以则故答案为: 解析:11-【分析】由已知利用两角和与差的余弦公式可求cos cos αβ,sin sin αβ的值,进而根据同角三角函数基本关系式即可求解. 【详解】解:因为1cos()2αβ-=, 所以1cos cos sin sin 2αβαβ+=, 因为3cos()5αβ+=-, 所以3cos cos sin sin 5αβαβ-=-,所以1131cos cos ()22520αβ=-=-,11311sin sin ()22520αβ=+=,则1120tan tan 11120αβ==--. 故答案为:11-.16.①【分析】利用与的关系确定①②的周期在给定区间上去掉绝对值符号后确定单调性化简和后可得其性质从而判断③④【详解】周期是时是增函数①满足题意;周期是时是减函数②不满足题意;周期是③不满足题意;不是周期解析:① 【分析】利用()f x 与()f x 的关系确定①②的周期,在给定区间上去掉绝对值符号后确定单调性,化简cos x 和sin x 后可得其性质,从而判断③④【详解】()cos2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()cos2cos2f x x x ==-是增函数,①满足题意;()sin 2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()sin 2sin 2f x x x ==是减函数,②不满足题意;()cos cos f x x x ==,周期是2π,③不满足题意; sin ,0()sin sin ,0x x f x x x x ≥⎧==⎨-<⎩不是周期函数,④不满足题意.故答案为:①. 【点睛】结论点睛:本题考查三角函数的周期性与单调性,解题时可利用如下结论:①()sin()f x A x ωϕ=+(或cos()A x ωϕ+,函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π【分析】先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π 19.【分析】本题首先可通过三角恒等变换将转化为然后代入即可得出结果【详解】因为所以故答案为:【点睛】关键点点睛:本题考查给值求值问题能否合理利用同角三角函数关系诱导公式二倍角公式是解决本题的关键考查计算解析:45【分析】本题首先可通过三角恒等变换将cos 22πα⎛⎫- ⎪⎝⎭转化为22tan tan 1αα+,然后代入tan 2α=即可得出结果. 【详解】 因为tan 2α=, 所以2222sin cos 2tan 4cos 2sin 22sin cos tan 15παααααααα⎛⎫-==== ⎪++⎝⎭, 故答案为:45. 【点睛】关键点点睛:本题考查给值求值问题,能否合理利用同角三角函数关系、诱导公式、二倍角公式是解决本题的关键,考查计算能力,是中档题.20.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图【分析】 把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值. 【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭故答案为:2. 【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(12)7百米. 【分析】(1)先在三角形PBC 中利用已知条件求出PC 的长度,再在三角形PAC 中利用余弦定理求出PA 的长度,即可求解;(2)设出等腰三角形的边长以及角CEF ,则可求出CF 的长度,进而可得AF 的长度,再利用角的关系求出角ADF 的大小,然后在三角形ADF 中利用正弦定理化简出a 的表达式,再利用三角函数的最值即可求出a 的最小值,进而可以求解. 【详解】解:(1)因为P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,又1BC =,所以π6PCB ∠=,PC =π2ACB ∠=,所以π3ACP ∠=, 则在三角形PAC 中,由余弦定理可得:222π72cos33AP AC PC AC PC =+-⋅=,解得3AP =,所以连廊AP PC +=(2)设正三角形DEF 的边长为a ,()0πCEF αα∠=<<,则sin CF a α=,sin AF a α=,且EDB α∠=,所以2π3ADF α∠=-, 在三角形ADF 中,由正弦定理可得:sin sin DF AF A ADF=∠∠,即πsin sin 63a α=- ⎪⎝⎭即sin 12πsin 23a a αα=⎛⎫- ⎪⎝⎭,化简可得2π2sin sin 3a αα⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦所以7a ===≥(其中θ为锐角,且tan θ=),百米, 所以三角形DEF连廊长的最小值为7百米. 【点评】方法点睛:在求三角形边长以及最值的问题时,常常设出角度,将长度表示成角度的三角函数,利用三角函数的值域求最值. 22.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x = 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()f x =. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题.23.(1)310+;(2)750+-. 【分析】(1)由cos α求出sin α,利用两角和与差的正弦公式求解即可; (2)利用二倍角公式和两角和与差公式计算出结果. 【详解】 (1)0,2πα⎛⎫∈ ⎪⎝⎭,3cos 5α=,4sin 5α∴==,1sin cos 622πααα⎛⎫∴+=+ ⎪⎝⎭134255=⨯+=(2)由(1)可得:24sin 22sin cos 25ααα==22cos 2cos sin =-ααα223455⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭725=-,1cos 2cos 22322πααα⎛⎫∴+=- ⎪⎝⎭1724225225⎛⎫=⨯--⨯ ⎪⎝⎭750+=-.24.(1)π;(2)0,2⎡⎤⎢⎥⎣⎦.【分析】(1)利用二倍角公式以及辅助角公式化简()f x ,再根据最小正周期的计算公式求解出T ;(2)采用整体替换的方法,先确定出24x π⎛⎫+⎪⎝⎭的取值范围,然后根据正弦函数的单调性确定出()()max min ,f x f x ,由此求解出()f x 在,44ππ⎡⎫-⎪⎢⎣⎭上的值域. 【详解】(1)因为21cos 211()cos sin cos sin 2222242x f x x x x x x π+⎛⎫=+=+=++ ⎪⎝⎭, 所以22T ππ==; (2)因为,44x ππ⎡⎫∈-⎪⎢⎣⎭,所以32,444x πππ⎛⎫⎡⎫+∈- ⎪⎪⎢⎝⎭⎣⎭, 又因为sin y x =在,42ππ⎡⎫-⎪⎢⎣⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,且3sin 0sin 44ππ⎛⎫-<< ⎪⎝⎭,所以()max122f x π=+=8x π=,()min 10242f x π⎛⎫=-+= ⎪⎝⎭,此时4πx =-,所以()f x 的值域为0,2⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下:(1)先确定t x ωϕ=+这个整体的范围; (2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.25.(1)22πβαπ<-<,022απβ<-<;(2)27. 【分析】 (1)由,2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭以及不等式知识求出,24βπαπ⎛⎫-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭,再根据1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭可得,22βπαπ⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭. (2)根据cos cos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用两角差的余弦公式可求得结果.【详解】 (1),2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,,242αππ⎛⎫∴∈ ⎪⎝⎭,0,24βπ⎛⎫∈ ⎪⎝⎭,,02πβ⎛⎫-∈- ⎪⎝⎭, ,224αππ⎛⎫∴-∈-- ⎪⎝⎭,,024βπ⎛⎫-∈- ⎪⎝⎭,,24βπαπ⎛⎫∴-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭, 又1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,所以22πβαπ<-<,022απβ<-<.(2)coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又1cos 29βα⎛⎫-=- ⎪⎝⎭且,22βπαπ⎛⎫-∈ ⎪⎝⎭,sin 29βα⎛⎫∴-== ⎪⎝⎭,又2sin 23αβ⎛⎫-= ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,cos 23αβ⎛⎫∴-==⎪⎝⎭,12cos293αβ+∴=-+=【点睛】关键点点睛:将所求角拆成两个已知角进行求解是解题关键.26.(Ⅰ)718;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】 (Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案;(Ⅱ)对()f x 进行整理化简,得到()π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以cos 3α==.故()()1cos sin cos 2f αααα=+-=(Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+-11πsin 2cos 22224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由2y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得3ππππ88k x k -+≤≤.k Z ∈. 故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题.。
一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725- C .7- D .17-2.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-3.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定4.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦5.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C .2D .126.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π7.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>8.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.已知()1sin 2=-f x x x ,则()f x 的图象是( ).A .B .C .D .10.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .626244⎛-⎝⎭B .626244⎛⎝⎭C .266244⎛⎫⎪ ⎪⎝⎭D .262644⎛ ⎝⎭11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 16.已知函数()22sin cos 23cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 17.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .18.方程21sin 3sin cos 2x x x =在[0,]4π上的解为___________19.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________.20.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 三、解答题21.已知函数()π322sin cos 6f x x x x ⎛⎫=-- ⎪⎝⎭. (1)求()f x 的单调增区间. (2)当ππ,44x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 22.已知函数2()2sin 23cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 23.已知函数2()23cos )f x x x =--. (1)求4f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 24.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 25.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间.26.已知函数2()2sin 23)sin ()2f x x x x x ππ⎛⎫=+-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形.故选:A .4.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.5.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意, 取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin5α===±,又0πα<<,所以α为第二象限角,所以4sin5α所以sintans43coααα==-.故选:A.9.B解析:B【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项.【详解】()()1sin2f x x x f x-=-+=-,()f x∴为奇函数,∴图象关于原点对称,故排除A,D;当π2x=时,ππ1024f⎛⎫=-<⎪⎝⎭,故排除C.故选:B.【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手:(1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项;(3)代入特殊点求函数值,排除某些选项.10.C解析:C【分析】先求出a与x轴正方向的夹角为3πθ=,即可得b与x轴正方向的夹角为73412πππα=+=,再利用向量坐标的定义即可求解.【详解】设a的起点是坐标原点,a与x轴正方向的夹角为θ,1a=由13,2a⎛=⎝⎭可得2tan12θ==3πθ=,设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭,7coscos cos cos sin sin 124343434x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭,故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.11.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】因为2cos 432θπ⎛⎫= ⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++,令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-,故()g x 是奇函数,故其最大值与最小值的和为零, 所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+= ⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈,当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.16.【分析】先将函数化简整理根据相邻对称轴之间距离求出周期确定再根据正弦函数的性质结合给定区间即可求出最值【详解】因为由题意知的最小正周期为所以即所以当时所以因此所以函数的最小值为故答案为:解析:-【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-.故答案为:-17.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.18.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 212222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭,∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.19.(答案不唯一)【分析】根据的值域为可知若满足则必有的值分别为再根据三角函数的性质分析即可【详解】因为的值域为故若满足则必有的值分别为故的最小值当且仅当为相邻的两个最值点取得此时为的半个周期即故答案为解析:π2(答案不唯一) 【分析】根据()cos2f x x =的值域为[]1,1-可知若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,再根据三角函数的性质分析即可.【详解】因为()cos2f x x =的值域为[]1,1-,故若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,故12x x -的最小值当且仅当12,x x 为()cos2f x x =相邻的两个最值点取得.此时12x x -为()cos2f x x =的半个周期,即12222ππ⨯=. 故答案为:2π【点睛】关键点点睛:相邻的两个最值点的横坐标的距离为半个周期是解题的突破点.20.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 444444525220ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.三、解答题21.(1)π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)11,2⎡⎤-⎢⎥⎣⎦.【分析】(1)由恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据πππ2π22π232k x k -+≤-≤+解得()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)由ππ,44x ⎡⎤∈-⎢⎥⎣⎦得5πππ2636x -≤-≤,进而得π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭,即()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【详解】 解:(1)()11π2cos 2sin 2sin 2cos 2sin 222223f x x x x x x x ⎫⎛⎫=--=-=-⎪ ⎪⎪⎝⎭⎭, ∵πππ2π22π232k x k -+≤-≤+,()k ∈Z , ∴π5πππ1212k x k -+≤≤+,()k ∈Z , ∴()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z .(2)∵ππ44x -≤≤, ∴5πππ2636x -≤-≤, ∴π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭, ∴()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【点睛】本题解题的关键是根据三角恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据整体换元的思想求函数的单调区间与值域,考查运算求解能力,是中档题. 22.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解.23.(1π;(2)最小值1-;最大值2. 【分析】(1)由二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质求得周期; (2)求得26x π+的范围后,由正弦函数性质得最值.【详解】(1)因为2()2cos )f x x x =--()2223sin cos cos x x x x =-+-()22212sin212sin 2x x x x =-+=-cos 222sin 26x x x π⎛⎫==+ ⎪⎝⎭所以22sin 22sin 4463f ππππ⎛⎫⎛⎫=⋅+==⎪ ⎪⎝⎭⎝⎭所以()f x 的周期为22||2T πππω===. (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,252,,2,33666x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦所以当6x π=-时,函数取得最小值16f π⎛⎫-=- ⎪⎝⎭.当6x π=时,函数取得最大值26f π⎛⎫=⎪⎝⎭. 【点睛】关键点点睛:本题考查求三角函数的周期,最值.解题方法是利用二倍角公式,诱导公式,两角和与差的正弦(或余弦)公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(223x π⎛⎫+≥ ⎪⎝⎭,可得sin 23x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ23x π⎛⎫+≥ ⎪⎝⎭()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 25.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范. 26.(1)最小正周期为π;(2)单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(3)[0,3].【分析】(1)逆用二倍角公式化简整理可得()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用2T ωπ=即可求得()f x 的最小正周期;(2)令26z x π=-,利用函数2sin 1y z =+的图像与性质,列出不等式,即可求得()f x 的单调递减区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦,可得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数的图像与性质,即可求得()f x 的取值范围.【详解】 (1)由已知可得()1cos 2cos f x x x x =-+2cos 21x x =-+2sin 216x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期为22T ππ==. (2)令26z x π=-,函数2sin 1y z =+的单调递减区间是32,222k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .所以3222262k x k πππππ+≤-≤+,k ∈Z 得536k x k ππππ+≤≤+,k ∈Z . 所以()f x 的单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(3)因为20,3x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[0,3]f x ∈,即()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围是[0,3]. 【点睛】本题考查二倍角公式的逆用,辅助角公式的应用,正弦型函数的单调区间、周期和值域问题,综合性较强,考查计算化简,数形结合的能力,考查整体性的思想,属基础题.。