一道高考压轴题的别解、变式及推广
- 格式:pdf
- 大小:86.90 KB
- 文档页数:2
高考数学压轴题解法与技巧高考数学压轴题,一直以来都是众多考生心中的“拦路虎”。
然而,只要我们掌握了正确的解法与技巧,就能在这场挑战中脱颖而出。
首先,我们要明确什么是高考数学压轴题。
通常来说,压轴题是指在高考数学试卷的最后几道题目,它们综合性强、难度较大,往往涵盖了多个知识点,对考生的思维能力、计算能力和综合运用知识的能力都有很高的要求。
一、掌握扎实的基础知识要解决高考数学压轴题,扎实的基础知识是关键。
这包括对数学概念、定理、公式的深入理解和熟练掌握。
例如,函数的性质、导数的应用、数列的通项公式与求和公式、圆锥曲线的方程与性质等。
只有在基础知识牢固的基础上,我们才能在复杂的题目中找到解题的突破口。
以函数为例,要理解函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并且能够熟练运用求导的方法来研究函数的单调性和极值。
如果对这些基础知识掌握不扎实,在面对压轴题中涉及函数的问题时,就会感到无从下手。
二、培养良好的数学思维1、逻辑思维在解决压轴题时,清晰的逻辑思维至关重要。
我们需要从题目中提取关键信息,分析已知条件和所求问题之间的逻辑关系,逐步推导得出结论。
比如,在证明一个数学命题时,要先明确证明的方向,然后根据已知条件选择合适的定理和方法进行推理。
在推理过程中,要保证每一步都有依据,逻辑严密,不能出现跳跃和漏洞。
2、逆向思维有时候,正向思考难以解决问题,我们可以尝试逆向思维。
即从所求的结论出发,反推需要满足的条件,逐步逼近已知条件。
例如,对于一些存在性问题,我们可以先假设存在满足条件的对象,然后根据假设进行推理,如果能够推出与已知条件相符的结果,那么假设成立;否则,假设不成立。
3、分类讨论思维由于压轴题的综合性较强,往往需要根据不同的情况进行分类讨论。
比如,对于含参数的问题,要根据参数的取值范围进行分类,分别讨论在不同情况下的解题方法。
在分类讨论时,要做到不重不漏,条理清晰。
每一类的讨论都要独立进行,最后综合各类的结果得出最终答案。
高考数学必做36道压轴题答案(解析几何部分)1-1 解:(Ⅰ)设双曲线的方程是12222=-by a x (0>a ,0>b ),则由于离心率2==ace ,所以a c 2=,223a b =. 从而双曲线的方程为132222=-ay a x ,且其右焦点为F (a 2,0). 把直线MN 的方程a x y 2-=代入双曲线的方程,消去y 并整理,得074222=-+a ax x .设M 11(,)x y ,N 22(,)x y ,则a x x 221-=+,22127a x x -=. 由弦长公式,得212214)(2||x x x x MN -+⋅=)27(4)2(222a a ---⋅==6.所以1=a ,3322==a b .从而双曲线的方程是1322=-y x . (Ⅱ)由m kx y +=和1322=-y x ,消去y ,得032)3(222=----m kmx x k . 根据条件,得0)3)(3(442222>----=∆m k m k 且032≠-k .所以 3322≠>+k m .设A ),(33y x ,B ),(44y x ,则24332k km x x -=+,332243-+=k m x x . 由于以线段AB 为直径的圆过原点,所以04343=+y y x x . 即 0)()1(243432=++++m x x km x x k .从而有03233)1(22222=+-⋅+-+⋅+m k km km k m k ,即22321m k =+. 所以 点Q 到直线l :m kx y +=的距离为|11|2632|1|1|1|22mm m k m d +=+=++=.由 13222-=m k ≥0,解得 36136≤≤-m 且01≠m . 由 13222-=m k 3≠,解得 ≠m 166±. 所以当26=m 时,d 取最大值226)361(26+=+,此时0=k . 因此d 的最大值为226+,此时直线l 的方程是26=y . 1-2 解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l=2c = 所以椭圆C 的焦距为4.(Ⅱ)设1122(,),(,)A x y B x y ,由题意知10y <,20y >,且直线l的方程为2).y x -联立22222),1y x x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y y b +--=,解得12y y ==. 因为222AF F B =,所以122y y -=,即222222(22)(22)233a a a b a b+-=⋅++,得3a =.而224a b -=,所以b =故椭圆C 的方程为221.95x y += 2-1 解:(Ⅰ)因为c e a ==所以 22222213c a b e a a -=== ,即2223b a =,又b == 所以22b =,23a =,即a =b =(Ⅱ)解法1:由(1)知12,F F 两点分别为(1,0)-,(1,0),由题意可设(1,)P t . 那么线段1PF 中点为(0,)2tN ,设(,)M x y .由于(,)2tMN x y =--,1(2,)PF t --, 则1,2(),2y t t MN PF x t y =⎧⎪⎨⋅=+-⎪⎩消去参数t ,得24y x =-,其轨迹为抛物线. 解法2:如图,因为M 是线段1PF 垂直平分线上的点,所以1||||MP MF =,即动点M 到定点1F 的距离与的定直线1l 的距离相等,1F ,由抛物线的定义知,动点M 的轨迹是以定点以定直线1l 为准线的抛物线,易得其方程是24y x =-.2-2 解:(Ⅰ)设动点E 的坐标为(,)x y ,依题意可知1222y y x x ⋅=-+-,整理得221(2)2x y x +=≠±. 所以动点E 的轨迹C 的方程为221(2)2x y x +=≠±. (II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+. 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++.由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++.当0k >时,因为12k k +≥0P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= 综上所述,点P纵坐标的取值范围是[. 3-1 解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为所以1c =,a =22b =. 所以W 的方程是22132x y +=.(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221,132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=.所以122632k x x k +=-+, 所以12023232x x kx k +==-+, 从而0022132y kx k =+=+.所以MN 斜率2002232332MNy k k k x m m k +==---+. 又因为CM DM =, 所以CD MN ⊥,所以222132332k k k m k +=---+,即 212323k m k k k=-=-++6[,0)(0,]1212∈-. 故所求m 的取范围是[]1212-. 3-2 解:(Ⅰ)依题意,c =1b =,所以a .故椭圆C 的方程为2213x y +=. (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设A ,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=. 综上所述,,m n 的关系式为10m n --=.4-1 解:(Ⅰ)设椭圆长半轴长及分别为a ,c ,由已知得,1,7.a c a c -=⎧⎨+=⎩解得a =4,c =3.所以椭圆C 的方程为221.167x y += (Ⅱ)设M (x ,y ),P(x ,1y ),其中[]4,4.x ∈- 由已知得222122.x y e x y+=+ 因为 34e =, 所以 2222116()9().x y x y +=+由点P 在椭圆C 上得,221112716x y -=,化简得 29112y =. 所以点M的轨迹方程为(44)3y x =±-≤≤, 轨迹是两条平行于x 轴的线段.4-2(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行. 设M (x , y ),由题意,得(),(,3)A x B x x ,所以||,||AM y MB y -=,因为||||3AM MB ,所以)()3y y -⨯=,即2213y x -=,所以点M 的轨迹W 的方程为221(0)3y x x -=>.(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M , 此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠;当02x 时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+, 又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x y x y x ⨯++==+--+, 因为点M 在W 上,所以220013y x -=,即220033y x =-,所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-, 所以tan tan 2MQP MPQ ∠=∠, 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠.综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立.5-1 解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等, 即(,2)M m 到2py =-的距离为3; 所以 232p-+=,解得2p =. 所以 抛物线P 的方程为24x y =.(ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 216160k ∆=-=,解得1k =±.所以切线方程为1y x =±-.(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. 所以 122x x pk +=,212x x p ⋅=-; 因为 11(,)A x y , 所以 直线OA :11y y x x =,与2p y =-联立可得11(,)22px p C y --, 同理得22(,)22px pD y --. 因为 焦点(0,)2pF , 所以 11(,)2px FC p y =--,22(,)2pxFD p y =--, 所以 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- 所以 以CD 为直径的圆过焦点F .5-2 解:(Ⅰ)如图,由题意得,22b c ==.所以b c ==2a =.所以所求的椭圆方程为22142x y +=. (Ⅱ)由(Ⅰ)知,C (2-,0),D (2,0).由题意可设CM :(2)y k x =+,P (1x ,1y ).MD CD ⊥,∴M (2,4k ).由 22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩,整理 得:2222(12)8840k x k x k +++-=.因为21284212k x k --=+, 所以2122412k x k-=+. 所以1124(2)12k y k x k =+=+,222244(,)1212k kP k k-++. 所以222222444(12)244121212k k k OM OP k k k k-+⋅=⋅+⋅==+++. 即OM OP ⋅为定值. (Ⅲ)设0(,0)Q x ,则02x ≠-.若以MP 为直径的圆恒过DP ,MQ 的交点,则MQ DP ⊥,∴0MQ DP ⋅=恒成立.由(Ⅱ)可知0(2,4)QM x k =-,22284(,)1212k kDP k k -=++. 所以202284(2)401212k kQM DP x k k k -⋅=-⋅+⋅=++. 即2028012k x k =+恒成立. 所以00x =.所以存在(0,0)Q 使得以MP 为直径的圆恒过直线DP ,MQ 的交点. 5-3 解:(I)直线l 的方程为210x y --=;(II) 由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=. (*)由2228(1)804m m m ∆=--=-+>,知28m <.设11(,)A x y ,22(,)B x y ,则由(*)式,有12212,21.82m y y m y y ⎧+=-⎪⎪⎨⎪=-⎪⎩由于1(,0)F c -,2(,0)F c ,且O 是12F F 的中点,依题意,由2AG GO =,2BH HO =,可知,11(,)33x y G ,22(,)33x yH . 若原点在以线段GH 为直径的圆内,则0OG OH ⋅<,即12120x x y y +<.而2222121212121()()(1)()2282m m m x x y y my my y y m +=+++=+-, 所以21082m -<,即24m <.又由已知1m >,所以12m <<. 即,实数m 的取值范围是(1,2).5-4 解:(Ⅰ)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:1(0)x x =>,化简得24(0)y x x =>.(Ⅱ)设过点M (m ,0)(m >0)的直线l 与曲线C 的交点为A 12(,)x y ,B 22(,)x y . 设直线l 的方程为x =ty +m , 由2,4x ty m y x=+⎧⎨=⎩得2440y ty m --=,△=16(2t +m )>0,于是12124,4.y y t y y m +=⎧⎨=-⎩ ①又1122(1,),(1,)FA x y FB x y =-=-.0FA FB ⋅<1212(1)(1)x x y y ⇔--+=1212()x x x x -++1+120y y < ②又24y x =,于是不等式②等价于2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+<⎣⎦ ③ 由①式,不等式③等价于22614m m t -+< ④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+<, 即33m -<<+由此可知,存在正实数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0FA FB ⋅<,且m的取值范围(3-+.6-1 解:(Ⅰ)由题意,2221,,a c b a b c ⎧-=⎪⎪=⎨⎪=+⎪⎩解得1a c ==.即:椭圆方程为.12322=+y x (Ⅱ)当直线AB 与x轴垂直时,AB =,此时AOB S ∆不符合题意故舍掉;当直线AB 与x 轴不垂直时,设直线 AB 的方程为:)1(+=x k y , 代入消去y 得:2222(23)6(36)0k x k x k +++-=.设1122(,),(,)A x y B x y ,则212221226,2336.23k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以AB =. 原点到直线的AB距离d =,所以三角形的面积12S AB d ==由224S k k =⇒=⇒=所以直线0AB l y -=或0AB l y +=.6-2 解:(I )椭圆C 的方程为)0(12222>>=+b a b y a x,由已知得2222.c e a a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩解得1,1a b c ===所以所求椭圆的方程为1222=+y x .(II)由题意知l 的斜率存在且不为零,设l 方程为2(0)x my m =+≠ ①,将①代入1222=+y x ,整理得 22(2)420m y my +++=,由0>∆得2 2.m >设),(11y x E ,),(22y x F ,则1221224222m y y m y y m -⎧+=⎪⎪+⎨⎪=⎪+⎩②由已知,12OBE OBF S S ∆∆=, 则||1||2BE BF = 由此可知,2BF BE =,即212y y =,代入②得,12212432222m y m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,消去1y 得222221629(2)2m m m ⋅=++ 解得,2187m =,满足22.m >即7m =±. 所以,所求直线l的方程为71407140x x --=+-=或.7-1 解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F .所以532422a ==+=. 所以2a =,又1c = 2413b =-=,故椭圆的方程为22143x y +=. (Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=,显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k -+=-⋅=++又||AB ==即2212(1)||34k AB k+==+, 又圆2F的半径r ==所以2221112(1)||,22347AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±,所以,r ==故圆2F 的方程为:22(1)2x y -+=. (Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ 所以12||y y -== 又圆2F的半径为r ==,所以21212121||||||27AF B S F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==2F 的方程为:22(1)2x y -+=.7-2 (Ⅰ)解 设直线PQ 的方程为)3(-=x k y .由⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得,062718)13(2222=-+-+k x k x k , 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②由直线PQ 的方程得 11(3)y k x =-,22(3)y k x =-.于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ 因为0OP OQ ⋅=,所以 02121=+y y x x . ④ 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (Ⅱ)证法1 ),3(),,3(2211y x AQ y x AP -=-=. 由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--=.而2221(2,)(,)2FQ x y y λλ-=-=,所以FM FQ λ=-. 证法2 (坐标法与几何证法结合)为使结论更具一般性,下面就椭圆方程为22221(0)x y a b a b +=>>,点A 的坐标为2(,0)a c进行证明(其中22c a b =+).如图,对三角形PHA ∆应用梅涅劳斯定理,得1AQ PM HEQP MH EA⋅⋅=,又2PM MH =, 所以,12AQ HE QP EA ⋅=, 作QD x ⊥轴于D ,则,12AD HE DH EA ⋅=, (二维问题一维化)设),(),,(2211y x Q y x P ,0(,0)E x , 将上式用坐标表示,得2201221012a x x x c a x x x c--⋅=--,整理得,2201212122[()]()2a a x x x x x x x c c-+=⋅+-. (这个过程虽然复杂,但却表现出强烈的目标意识!下面的目标是非常明确的,即用解析几何的常规方法,求出12x x +与12x x )显然,直线AP 不垂直x 轴,故可设直线AP 的方程为2()a y k x c=-,由22222(),1a y k x c x y ab ⎧=-⎪⎪⎨⎪+=⎪⎩消去y ,整理得,242622222222()0k a k a a k b x x a b c c +-+-=, 所以,24122222*********,()().()k a x x c a k b k a abc x x c a k b ⎧+=⎪+⎪⎨-⎪=⎪+⎩222422122222222222()()()a a k a ab x xc c c a k b c a k b -+=-=++ 22242622212122222222222222()2()2()()a a k a k a abc a b x x x x c c c a k b c a k b a k b-⋅+-=⋅-=+++ 所以,222220222222()2a b c a k b x c a k b a b+=⋅=+. 这说明,直线MQ 与x 轴的交点是椭圆的右焦点(,0)F c . 所以,若AP AQ λ=,即,AP AQλ=,则PH MH MFQD QD FQ λ===,即FM FQ λ=-.注:λ可以是一切正实数,当1λ=时,,P Q 重合. 8-1 解:(Ⅰ)由焦点F ( 1, 0 ) 在l 上, 得k = –21, 所以l : y = –21x +21. 设点N( m , n ) , 则有: 11()()1,12112 1.22n m m n -⎧-=-⎪-⎨++⎪+=⎩解得1,53.5m n ⎧=⎪⎨⎪=-⎩所以N (51, – 53), 因为54≠ ( –53)2 ,所以N 点不在抛物线C 上. (2) 把直线方程11--=kk y x 代入抛物线方程得: k 2y 2 + 4y + 4k +4 = 0 , 因为相交,所以△ = 16 (–k 2 – k + 1)≥ 0,解得251--≤ k ≤251+- 且k ≠ 0 . 由对称得⎪⎪⎩⎪⎪⎨⎧+++=+-=⋅--1221110000k a x k y k a x y ,解得 x 0 =12)1(222+--k k k a (2511+-≤ k ≤251+-,且k ≠ 0). 当P 与M 重合时, a = 1,所以 f ( k ) = x 0 =13122+-k k = – 3 +142+k (2511+-≤ k ≤251+-, 且k ≠ 0), 因为函数x 0 = f ( k )(k ∈R)是偶函数,且k > 0时单调递减. 所以当k =251--时, (x 0)min =5525+-, 1lim 00=→x k ,所以 x 0 ∈[5525+-,1). 8-2 解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b ,所以椭圆方程是:1322=+y x . (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由DF ED 2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y , 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),直线EF 的方程为:1-=y x 即01=+-y x .(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, 所以存在67=k ,满足题设条件. 9-1 解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===. 即2243a b =.又因为b == 所以24a =,23b =.故椭圆C 的方程为22143x y +=. (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-. ②由①得 21223243k x x k +=+,2122641243k x x k -=+代入② 整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上.由22(1),1.43y m x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+, 22943M N m y y m =-+. 则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++. 因为20m ≥,所以21133044(43)m -≤-<+. 所以5[4,)4OM ON ⋅∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是5[4,]4--.9-2 (Ⅰ)解:由题意可设抛物线的方程为22x py =(0)p ≠.因为点(,4)A a 在抛物线上,所以0p >. 又点(,4)A a 到抛物线准线的距离是5,所以452p+=,可得2p =. 所以抛物线的标准方程为24x y =.(Ⅱ)解:点F 为抛物线的焦点,则(0,1)F .依题意可知直线MN 不与x 轴垂直,所以设直线MN 的方程为1y kx =+.由21,4.y kx x y =+⎧⎨=⎩ 得2440x kx --=.因为MN 过焦点F ,所以判别式大于零. 设11(,)M x y ,22(,)N x y . 则124x x k +=,124x x =-.2121(,)MN x x y y =--2121(,())x x k x x =--.由于24x y =,所以'12y x =. 切线MT 的方程为1111()2y y x x x -=-, ① 切线NT 的方程为2221()2y y x x x -=-. ② 由①,②,得1212(,)24x x x x T + 则1212(,1)(2,2)24x x x x FT k +=-=-. 所以21212()2()0FT MN k x x k x x ⋅=---=. (Ⅲ)证明:2222(2)(2)44FTk k =+-=+.由抛物线的定义知 11MF y =+,21NF y =+.则12(1)(1)MF NF y y ⋅=++2121212(2)(2)2()4kx kx k x x k x x =++=+++244k =+.所以2FTMF NF =⋅.即FT 是MF 和NF 的等比中项.10-1 (Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PFO ∠=︒, 所以1bc . 所以 2222ab c .所以 椭圆G 的标准方程为2212x y +=. (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ∆=-+>,1122211224,1222.12km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以||AB ===同理||CD =因为 ||||AB CD =, 所以=因为 12m m ≠, 所以 120m m +=.(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则1221m m dk.因为 120m m +=, 所以 1221m dk.所以||S AB d =⋅=2221121k m m -++=≤=.(或S ==≤ 所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为10-2 (Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. 将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① 因为 2AF FB =, 所以 122y y =-. ②联立①和②,消去12,y y,得4m =±. 所以直线AB的斜率是±.(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅-==所以 0m =时,四边形OACB 的面积最小,最小值是4.11-1 解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① 又点3(1,)2M 在椭圆C 上,所以221914a b += ② 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =||OP = 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. 由于点P 在椭圆C 上,所以 2200143x y +=. 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式.又||OP =====因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. 综上,所求OP的取值范围是. (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥把④⑤⑥代入③整理得0034x ky =- 与22003412x y +=联立消0x 整理得202943y k =+.由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+, 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤. 所求OP的取值范围是. 11-2 解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+, 所以24622+=+c a ,,即c a =,所以c =,所以3a =,c =所以1b =,椭圆M 的方程为1922=+y x . (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x ,同理可得2219327n n x +-=,所以1961||22++=n n BC ,222961||nn n n AC ++=, 964)1()1(2||||212+++==∆n n n n AC BC S ABC, 设21≥+=nn t , 则22236464899t S t t t==≤++, 当且仅当38=t 时取等号, 所以ABC ∆面积的最大值为83. 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-, 得 1212(3)(3)0x x y y --+=. 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点), 所以121||||2ABC S DC y y ∆=-12== 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 12-1 解:(Ⅰ)因为四边形AMBN 是平行四边形,周长为8,所以两点,A B 到,M N 的距离之和均为4,可知所求曲线为椭圆.由椭圆定义可知,2,a c ==1b =,所求曲线方程为1422=+y x . (Ⅱ)由已知可知直线l 的斜率存在,又直线l 过点(2,0)C -,设直线l 的方程为:(2)y k x =+,代入曲线方程221(0)4x y y +=≠,并整理得2222(14)161640k x k x k +++-=, 点(2,0)C -在曲线上,所以D (228214k k -++,2414kk +),(0,2)E k ,CD =2244(,)1414kk k++,(2,2)CE k =, 因为OA //l ,所以设OA 的方程为y kx =.代入曲线方程,并整理得22(14)4k x +=,所以(A .22222228814142441414k CD CE k k k OA k k+⋅++==+++,所以2CD CE OA ⋅为定值.12-2 解:(Ⅰ)由题意得2c a =① 因为椭圆经过点)21,26(P ,所以22221()221a b += ② 又222a b c =+ ③由①②③ 解得 22=a ,122==c b .所以椭圆方程为2212x y +=. (Ⅱ)以OM 为直径的圆的圆心为(1,)2t ,半径r =方程为222(1)()124t t xy -+-=+,因为以OM 为直径的圆被直线3450x y --=截得的弦长为2, 所以圆心到直线3450x y --=的距离d 2t=. 所以32552t t--=,解得4t =. 所求圆的方程为22(1)(2)5x y -+-=.(Ⅲ)方法一:过点F 作OM 的垂线,垂足设为K ,由平几知:2ONOK OM =.则直线OM :2t y x =,直线FN :2(1)y x t=--,由,22(1),t y x y x t ⎧=⎪⎪⎨⎪=--⎪⎩得244K x t =+.所以2M ONx x =22444422=⋅+⋅+=t t . 所以线段ON方法二:设00(,)N x y ,则 ),1(00y x FN -=,),2(t OM =,),2(00t y x MN --=,),(00y x ON =.因为 OM FN ⊥,所以 0)1(200=+-ty x .所以 2200=+ty x . 又因为 ON MN ⊥,所以0)()2(0000=-+-t y y x x , 所以22002020=+=+ty x y x . 所以22020=+=y x 为定值.12-3 解:(Ⅰ)(ⅰ)因为 圆O 过椭圆的焦点,圆O :222x y b +=,所以b c =,所以2222b ac c =-=, 所以222a c =,所以e =(ⅱ)由90APB ∠=及圆的性质,可得OP =,所以2222,OP b a =≤所以222a c ≤ 所以212e ≥,12e ≤<. (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y x x x y -=--整理得220011x x y y x y +=+ 因为22211x y b +=所以PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.所以11x x y y +=22x x y y +, 所以021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,所以2222222220022442a y b x a b a b a b b bON OM ++===,所以2222a b ON OM+为定值,定值是22a b . 13-1 解:(Ⅰ)由题意可知:222,c c e a a b c ⎧=⎪⎪==⎨⎪=+⎪⎩解得 1,2==b a .所以椭圆的方程为:1422=+y x . (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(0)44)(41(4)8(222>-+-=∆m k km ,整理得01422>+-m k , 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+. 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A , 所以1212(2)(2)0x x y y --+=,2212122121)())((m x x km x x k m kx m kx y y +++=++=,即04))(2()1(221212=+++-++m x x km x x k ,也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k , 整理得:01216522=++k mk m , 解得562k m k m -=-=或均满足01422>+-m k . 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去; 当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(. 故直线l 过定点,且定点的坐标为)0,56(. 13-2 解:(I )由题意可得OP OM ⊥, 所以0OP OM ⋅=,即(,)(,4)0x y x -=,即240x y -=,即动点P 的轨迹W 的方程为24x y =.(II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 则216640k ∆=->,即||2k >.12124,16x x k x x +==.直线212221':()y y A B y y x x x x --=-+,所以212221()y y y x x y x x -=-++,2222122121()4()4x x y x x x x x -=-++,222121221444x x x x x y x x --=-+,2112y 44x x x xx -=+,即2144x x y x -=+. 所以,直线'A B 恒过定点(0,4). 13-3 解:(Ⅰ)设动点M 的坐标为(,)x y ,|1|x =+,化简得24y x =,所以点M 的轨迹C 的方程为24y x =.(Ⅱ)设,A B 两点坐标分别为11(, )x y ,22(,)x y , 则点P 的坐标为1212(,)22x x y y ++. 由题意可设直线1l 的方程为(1)y k x =- (0)k ≠,由24, (1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=. 2242(24)416160k k k .因为直线1l 与曲线C 于,A B 两点, 所以12242x x k +=+,12124(2)y y k x x k+=+-=. 所以点P 的坐标为222(1, )k k+. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为2(12,2)k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为222(12)1k y k x k k+=---, 整理得2(3)0yk x k y +--=.于是,直线PQ 恒过定点(3, 0)E ;当1k =±时,直线PQ 的方程为3x =,也过点(3, 0)E . 综上所述,直线PQ 恒过定点(3, 0)E . (Ⅲ)可求的||2EF ,所以FPQ ∆面积121||(2||)2(||)42||||S FE k k k k =+=+≥. 当且仅当1k =±时,“=”成立,所以FPQ ∆面积的最小值为4. 14-1 解:(Ⅰ)由题意知:1c .根据椭圆的定义得:22222(11)()22a ,即2a .所以 2211b.所以 椭圆C 的标准方程为2212x y +=. (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立.当直线l 的斜率为0时,(A B .则 7,0)(2,0)16m m . 解得 54m.当直线l 的斜率不存在时,(1,22A B -. 由于52527(1,)(1,)424216,所以54m . 下面证明54m时,716QA QB ⋅=-恒成立. 显然 直线l 的斜率为0时,716QA QB ⋅=-. 当直线l 的斜率不为0时,设直线l 的方程为:1xty ,1122,,,A x y B x y .由221,21x y x ty 可得:22(2)210t y ty .显然0∆.1221222,21.2t y y t y y t因为 111x ty ,221x ty ,所以 112212125511(,)(,)()()4444x y x y ty ty y y2121211(1)()416t y y t y y2221121(1)24216t t t t t22222172(2)1616t t t . 综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 14-2解:(Ⅰ)由题意可知2)(136abe -==,得 223b a =. 因为1,1B()在椭圆上11122=+b a 解得:34422==b ,a .故椭圆M 的方程为:143422=+y x . (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为k -,因此PB ,QB 的直线方程分别为(1)1y k x =-+,(1)1y k x =--+.由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k .因为点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P所以22361131P k k x k --⋅=+,即2236131P k k x k --=+,同理1316322+-+=k k k x Q .所以=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P .因为(2,0),(1,1)A C --,所以13AC k =, 即 AC PQ k k =. 所以向量AC //PQ ,则总存在实数λ使AC PQ λ=成立.15-1 解:(Ⅰ)因为ace ==22, 12122=+a b ,222c b a +=所以2=a ,2=b ,2=c所以14222=+y x . (Ⅱ)设直线BD 的方程为b x y +=2所以⎩⎨⎧=++=42222y x bx y 0422422=-++⇒b bx x所以06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----②因为12BD x =-===,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =所以2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2.(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y=]1)(2[22212121++--++x x x x x x b ------*将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0.15-2 解:(Ⅰ)设1122(,),(,)C x y D x y ,直线l 的方程为1(0)y kx k =+≠.由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)16480k k k ∆=++=+>,12224k x x k -+=+,12234x x k -=+, 由已知1(,0),(0,1)E F k-, 又CE FD =,所以11221(,)(,1)x y x y k---=- 所以121x x k --=,即211x x k+=-, 所以2214k k k-=-+,解得2k =±,符合题意, 所以,所求直线l 的方程为210x y -+=或210x y +-=. (Ⅱ)2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+,平方得 22212212(1)4(1)y x y x -=+, 又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=.假设满足条件的实数k 存在,则由(Ⅰ)得12224k x x k -+=+,12234x x k-=+. 所以231030k k -+=,解得3k =或13k =, 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以存在实数k ,使得12:2:1k k =,且3k =.16- 1 解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191,41,2.a b c a a b c ⎧+=⎪⎪⎨=⎪⎪=+⎩解得24a =,23b =,故椭圆C 的方程为22143x y +=. (Ⅱ)因为过点(2, 1)P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1,x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ① 因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=. 整理,得32(63)0k +=. 解得12k =-. 所以直线l 方程为11(2)1222y x x =--+=-+. 将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为3(1, )2. (Ⅲ)若存在直线1l 满足条件,设直线1l 的方程为1(2)1y k x =-+,代入椭圆C 的方程得22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以222111111[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>.。
高考数学压轴题破解方法
压轴题一般指在高考试卷最后面出现的大题目。
在数学考试中有压轴题。
下面是为大家的高考数学压轴题破解方法,欢送参考~ 在解决高考数学压轴题的过程中,有时添加辅助线是必不可少的。
对于高考来说,只有一道很简单的数学证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
高考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原那么:构造定理所需的图形或构造一些常见的根本图形。
高考数学压轴题牵涉到的知识点较多,数学知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
高考数学压轴图形题,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何防止漏解也是一个令考生头痛的问题,其实多解的信息在数学题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,高考数学压轴题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的数学题目只要想到上述切入点,认真做下去,问题根本都可以得到解决。
则的取值范围是(()1,e e ⎫−⎪⎭e=2.71828为自然对数的的取值范围为()()m f n 成立,则双变量型不等式范围最值()y f x =,,[2x c ∀∈【典例1-1】(2023下·四川眉山·高三眉山市彭山区第一中学校考阶段练习)41.已知函数()e xf x ax =+有两个零点12,x x ,且12x x >,则下列说法不正确的是( )A .e a <−B .()1212ln 2x x x x +>+参考答案:【详解】()kf x x =)()a f b ==()()g c f b =1kx>,对于ln 1x +(3)3q =−故存在0x 当(1,x x ∈当0(,x x ∈N k +∈,且3k ∴≤故选:A【点睛】本题考查了利用导数研究函数的单调性,了转化思想,属于难题【详解】()f x e =()y f x =在区间1ln 1a <<,解得)0=,且不等式0fx .处取得最小值,则()f x 时,当ln x a <时,0fx.10f x .()1,e e ⎫−⎪⎭,故选本题考查函数的极值以及函数的零点问题,结合单调性考查整数解相邻整数点函数值的符号问题,解,考查运算能力与分析问题的能力,属于难题.f x,函数f x取得极大值时,函数()−上的图象,如图所示:(3,3]0fx ,1−,【点睛】本题考查了函数图象的应用,考查了函数导数的应用,表示,a c . 7.[)32ln 2,−+∞【解析】画出()f x 的图像如图所示,可知121x ,故122212ln x x x x ,构造min ()(2)32ln 2x g ==−,即得解【详解】的图像如图所示,可知()f x 为R 上的单调递增函数,2=,不妨设12x x <,可知121x x122212ln x x x不妨设()12ln ,g x x x x =−+22'()1,1x x x x x−=−=>由图可知,当0t >时,()f x t =有唯一解,故1)()h ee=,即故答案为:⎛−∞⎝【点睛】本题考查了导数的应用,考查了数形结合思想,属于难题【分析】令(f x0122≤<①②③④是分段函数,与④关于x =1对称,对称的二次函数,函数图像如下图:由f (x ),g (x )的图象都关于直线x =1对称可得x 1<x 3<2,由f (x 3)=g (x 3)得231x =-2x 3-a ,a =2xf x,故(f所以2>>a b,20ln>,即b> ln b af x,解得:()x在()01,上单调递减,在1>时,10<<0fx,此时函数()200ln 1x x =−+−<<1x所以,函数从而可得故选:C.)0,再构造函数,利用单调性求得(0,x ∈+∞,所以(f x '))0,)2ln 4x +1=−(0,)+∞上单调递减,)0x 得到10,2x ⎛⎤∈ ⎥⎝⎦,所以上单调递增,所以214e 2a ⨯⨯⋅【详解】()f x xe =()x g x e =时,对任意的()()0x g >0fx.上单调递增,无最小值;a .f x;0f x,故(f 所以()min f x f =使得02e xx x =+0a ,再利用基本不等式进行求解)0对一切正实数x 0min ,210x +>恒成立, →+∞, 0a ,0a 恒成立,即001a x x +,0001122x x ⋅=,当且仅当001x x =时取等号,2a ,所以1a . 故选:C .0fx,此时函数()200ln 1x x =−+()2ln 1ln x −+− 1x −<<)0,再构造函数,利用单调性求得(0,x ∈+∞,所以(f x '))0,)2ln 4x +1=−(0,)+∞上单调递减,)0x 得到10,2x ⎛⎤∈ ⎥⎝⎦,所以上单调递增,所以214e 2a ⨯⨯⋅本题主要考查导数的计算和导数在研究函数中的应用,正常求出极值点,可设出极值点作分析,还考查了学生分析推理能力,运算能力,综合应用由图可知,23,0m ⎛⎫−∈− ⎪ ⎪,∴0fx,此时0fx,此时()()210,e f ==在()0,1∈x 成立,ln(1)2x a +⎡⎤>⎢⎥1a)()m f n 成立min )()f x 要恒成立,min )()x f x 恒,被分离部分再构造函数求最值,即可求出1,3e ⎡⎤∈⎢⎥⎣⎦,)()f n 成立,min )()x f x 恒,∴()f x '1x ,则2ln a x x x −2ln x x x −,(1)h '=1)1e x h ⎛⎫''=− ⎪⎝⎭,所以h '(1,3),()h x 单减,所以1a 时,)1g x . 故实数a 的取值范围为1a .【点睛】本题考查恒成立问题易错解成求max )()x f x 问题,关键在于对存在命题的理解,本题多次用到了导数来研究函数最值问题,当首次求导不能判断导数正负值时,次求导,解法中若涉及参数,分离参数也是我们常采用的基本方法【分析】求得函数的导数,得到函数的单调区间,确定函数的极小值,根据极小值小于;根据极值点的位置,结合所以函数()f x 在()(,ln )a −∞−上单调递减,在()(ln ,)a −+∞上单调递增,因为函数()e xf x ax =+有两个零点12,x x 且12x x >,对A ,则()()()()()ln (ln )eln ln (1ln )0a a a a a f a a a a −==−−−−−+−−+=<,且0a <, 所以()1ln 0a −−<,解得e a <−,所以A 正确;对B ,e a <−,且11e 0x ax +=,22e 0xax +=,故()11ln x ax =−,()22ln x ax =−, 所以()212121212ln()2ln ln()2ln()x x a x x a x x x x +==−+>+,所以B 正确;对C ,由(0)10=>f ,且由A 可知,e a <−,()ln 1a −>,则201x <<,但121x x >不能确定, 所以C 不正确;对D ,由函数()f x 在()(,ln )a −∞−上单调递减,在()(ln ,)a −+∞上单调递增, 所以函数的极小值点为()0ln x a =−,所以D 正确; 故选:C. 42.D【分析】利用导数讨论函数()f x 的单调性,设12x x <、0()2f x =−且00x ≠,结合图象得120012x x x <<<<<,再利用导数研究函数()(1)(1)g x f x f x =+−−的性质得(1)(1)f x f x +>−,结合()()12f x f x =变形、基本不等式,即可判断各项正误.【详解】()(2)e x f x x =−,则()(1)e x f x x '=−,令()01f x x =⇒=',当(,1)x ∞∈−时()0f x '<,()f x 单调递减,当(1,)x ∈+∞时()0f x '>,()f x 单调递增, 在(,2)x ∞∈−上()0f x <,且(2)0f =,(0)2f =−,min ()(1)e f x f ==−,即()e f x ≥−. 综上,()f x 的图象如下:结合()()12f x f x k ==,120x x ⋅>,令12x x <,对B ,由基本不等式,12122x x x x e e e ++≥=对C ,因为21212012x x x x +⎛⎫<<= ⎪⎝⎭,所以00f x,所以22ln x ,即11ln x x。
高考数学高考数学圧轴试题的解题方法与策略痔名特©殺聊才衣*晾昕髙考数学用轴题主要是从数学内容与思想方法的二维要素1:考虑,由于圧轴题既要体现区分度的功能,又耍从学科整体高度和思维价值的髙度考虑问题•因而,高占压轴题无论是选择题、琐空题,还是解答题都是有规律可循的•本文就如何破解高考数学压轴试题给出解题方法和备考策略.―、客观性压轴试题的解题方法与策略从近几年的高考数学试题中可以看曲对于客观题一般是选掙题部分的最后一两道题和填空题部分的最后谴题•题目主要涉及函数与导数、解析几何、立体儿何、数列、计数原理及新定义问题等内容•对于解答客观题的方法和技巧在本书“热点关注"中有详细的讲解,在本文中只针对客观性圧轴题的解题方法和策略选取一种行之有效的方法——数形结合法进行探讨.数够结合的解题方法MS观件、灵活性、可#准等特点,在客观件试题屮特别要注总把"数"转化为"形"进行解题,即根据给出的"数"的结构特点,构造相应的几何图形J扩形"的直观性来解决"数"的抽象性问题.【点拔】超越方程解(或不等式解)的问题即为相应的函数第点问题,一般可以采用数形结合法,把方程(或不等式)通过移项变成左右两边都是基本函数或通过简单的变换能画出/(X闹是團象的函比两函数團象交点的横坐标即为方程的解.【解析】如图I -1 -1所示,在同一坐标系中画出y二/(*)和Y = X 4-"的图象, 由于含有歩量的)=Y + "是一簇平行直线移动"直线就可以直观得到实教“的取值范国是a<L故选C・【典例2】已知函数他)是奇函数「且橋足:⑪⑷寸(2拥O G R);②当0" W1时血二帥芋那么不等式伦-*)瘁的解集为_________________________【解析】由他)寸(2-%)(化口知函数的图象关于直线%二1对机又因为/(%)是奇函数「可得f(4 + %) =/(%)『郭结合②可画出函数他)的图象'如图1-1-2所氏图1-1-2在周期04]内'不等弍fQ)>彳■的解集为/#虑平秽和周期'知不等式-*)>£的解集为(4鸟+ 1川+*)(kwt).【点拨】联懑正兹函数尸sin %模型「可以推M/U)是周期函牝且r=4,但考虑到在高考中一道客观題可支配的时间在3分钟左札并且专家命題都是借用某个函数模型进行命題设计J 因比平时训练客观性试題娶有模型思惩大胆借用某个函数的模型快速画出草图『直观而简捷地得到结果.二、解答题压轴试题的解题方法与策略从近年的髙考数学试卷来看「解答题压轴试题主要为函数与导数、解析几何、数解析几何试题由于难度较大「且题型相对稳定「因此处理解析几何试题要注重加强对多种解题思路的探究和解题方法的选择•下面借用波利亚的解题观点(详细讲解可参考〃热点关注"中的“當析波利亚数学思维的新方法")来探究解析几何压轴题的解题方法与策略.【典例3】在平面直角坐标系幼中,已知两定点A(l, 动点M (知y)满足而二入血+“亦其中5A2 +20/? =4(A//IG R)・⑴求动点M的轨迹方程;⑵设点M的轨迹为曲线G点P是射线尸屁(%冷)上(非端点)任一,艮由P向的袋C引两切线PQ, PTQ T为切点).求证:无论点P在何处,直线QT的斜率为常数.【解析】(1)易得动点、M的轨迹方程是/ +4『=4.⑵解析一(通性通法)设点P(価)("*);设直线PQ:厂何誌G - APT:y _何二爲(%-£),直线PQ的方程改写为7 = ^x4- (Q-ij) £(变二项式)/ 联止厂恥+(俣小分C4[»+(乐初]2-仁0(建立缓冲式),[%2 +4y2二4/即得(1 +4幷)% + 8左](^2 -直J觥+ 4 [(血-左J $孑-]]二0〔求出二次三项式)「①所以4 = 64后(Q詁)卞_]6(4琴+ i)[(扬_阳2#一]](提出公因数(式))二16[4转(Q-需)宁-4^ (^2-ij2? +4岸-(72-^)¥ 4-1]=16[4iJ - (Q- A】)2? 4-1]二0(应用相切的条件)'即(P -4)肾-2偌耐+2『-1 =0;同理'可得(『-4)氏-275?左2 +2『-1 =0,(i)当fH2时&爲是方程(『-4)k2 -2區k +2?-]二0的两根(善于逆向思维), 由根与系数的关系「得血+代二蛀2二琴二占设Q馆「珀)「兀)「I -4 i -4(ii)当/二2 时r 切点、Q t T分别为(2,0);(-普/ % = ——=-因此,无论点、P在何处「直线QT的斜率均为常数.【点拨】对于第(2)问中(i)采用的通性通法,从运算过程来看似乎解答得很 "流畅S主要在方程或算式运算肿做了一些细腻的处理方法:联立方程时遵循了 "去分母原则“;消去未知数了肌建立了缓冲式;整理判别式时遵循了“首先提取公因式(数)原则";应用方程根的含义,逆向思堆发现了以k lt k2为根的一元二次方程;应用亶线与椭圆和切与二次方程有重根,求出了点的间接坐标(从整体思想考虑「不用求出直接坐标).解法二(整体思想)设点、P3血)(“*), Q(冲71), r(%2,为)「设以Q(巧殍J 为切点、的切线方程:了 -儿二2(% -坷).[/ -/1 二鸟(光 _光1) /联立得[%2 +4y2 -4=0;(1 +4泾)G -筍)2 +2 (衍+4伽)(% -坷)+并4-4/1 -4 =0 (将x变为(x - 光J + 衍即得)/即(1 +4/?)(第-%])2 4- 2 (%! +4伽])(%-%])=0;(i)当心2时j则并H 0'因为直线应与椭圆C相切'则A二4 & + 4伽1)2二0=>k = - —4/1所以切线方程为y - 了1二-7^-(% -%]) /即直线PQ的方程为%!% +4川歹-4=0.4/i又点、PS②)在直线PQ上则饮]+4為]-4 = 0,即点Q (冲为)在直线恢+ 4 何y -4 二0上(同理点7'(%2殍2)也在直线饮+ 4九科-4二0上'因此'直线QT的方程为;% + 475}/ -4=0;所以怖二- -£;(ii)当22时「同解法一.【点拨1解法二采用整体思想处理问題,在把賣线与椭圆方程联立消未知数叭采用的不是〃化简"而是〃化繁S有时“化筒“会崎岖难行「化繁“反而会海阔天空•本題中点Q.T^是点P的“伴随"点「但整个解蓉过程是以Q为中心「直到最后才联系到点P在直线PQ上.如果不采用整体处理方式「运算难度就湘当大.解法三把曲线C改写成“二士也产(不妨取%轴上方)'直线PQ 的方程:y-力二 --- ----2肿-代J A ~1点、Q (%1 / 71)在椭圆c\y - Y 丁土「上/则有71直线PQ 的方程:y 一力二-”-(光-衍),即光]% +4yy =# -1-4/1二4,①4/1点、P (%o 』o )在直线PQ 上J 则%0衍+4沏1 -4二0/②同理卩(%必)在直线PT 上r 则牝%2 +4/O /2 -4=0,③由②③『知直线“的方程为號+4畑-4=0,【点拨】等式②③已经不是二元一次方程了「但它们能说明点0丁都在宜线%o% +4y°y -4 二 0 上.逆命题探究 设动直线% + 4岛 7二0 (0 <几6)与椭圆亍+『二1相交于0 T两点'求证:椭圆在0丁两点处的两切线的交点在某条直线上.(有兴趣的同学可以 自行进行探究)最咸S 有一腰提醒的是虽然我们认为最IS —题有相当大分值的易得価分'但是 毕竟已毬场考试的最后阶段强弩之末势不能穿鲁織疲劳不可避免因此所有考生在 解答最后一®时'都要格外小心谨真避免易得分部分因为疲劳出错'导致失分.专题」函数与导数模型-函数的单调性【模型概述】函数的单调性是函数中非常重要的性质之-,是历年高考命题的 重点罚函数单调性的考查主要有三个方面:-是函数单调性的判断或求函数的单调 区间二是根跆魏数的单调性求解参数的取值范围;三是函数单调性的应用,如 求函数的越■躺函数的零点个瓠解不等式尊.在高考中,三种财輔所涉氏 其中判断函数的单调性以及刑用函数的单调性求解函数的最值通常出现在选择题或 填空题中;求含参函数的单调区间以及已知函数的单调性求參数的取值細主要以 解劄W 式出现求y 二一的导数r 得y 二 — 设 Q (衍殍J (靭殍2)/2 /4“ 直线"的斜率如二8,【思维模板】已知函数解析式判断函数的单调也若为逸择题或填空题则可根据基本初等函数的单调性以及复合函数单调性的判断方法进行判断也可通过函数图象直接进行判断,在解答题中则要利用导数法进行判断;对已知函数单调性求参数取值范围或者求解含参函数单调区间的问廳则要利用导数将其转化为导函数的符号问题来解决©®1导数法导数法就是利用导函数在单调区间上的保弛来处理有关函数单调性问题的- 种方法导数是函数单调性在毀的形式上的-种完美体现.利用导数求解函数的单调区间的針步驛是:ffi蘇出定妫;(2)求导,根讎榊颐的戦嘛求删I拙盼)的导盼W ;(3)解不等式不等式厂(%)>0的制蹴是函如⑺的递增区亂不等式广3 <0的躲醍函旳3的递减瓯“【调研1】已知函如3 gy+y(1)当a = -l时,求函数的单调瓯;(2)当0勺<£<讨论血)的单调性.£思维导图I求函数定义域I一I求导函数I—I像极值点庞导函数両分寫导函数中变号的部分|一|根据a的取值讨论导函数的符号7【解析】⑴当a二一1时』(光)=In % + % +一- 1 ; % s (0; + 8 ).%所以厂 &)二(―i)y+2)“Q(6 +8),%由厂(%)二0/得% = 1或%二-2(舍去)・所以当XG(0/1)时'厂(光)<0;函数j'&)单调递减;当% £( 1 ; + CO )时J厂(%) > o『函数fG)单调递增.故当a二-1时,函数fW的增区间为[1/ +8)'减区间为(0」]・•1(2)因为f(x)二In % - a% + -1 / %2—冒1~心。
高考数学压轴题解题技巧总结高考数学压轴题解题技巧总结高考数学中的压轴题,对于很多同学来说,都是一大难题。
下面小编为大家整理了几点高考数学压轴题解题技巧,供考生参考,希望在2024年的高考答题中,能对你有所启发,考出满意成绩!高考数学压轴题解题技巧1:三角函数题注意归一公式、诱导公式的正确性{转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。
高考数学压轴题解题技巧2:数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n 的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
高考数学压轴题解题技巧3:立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
高考数学压轴题解题技巧4:概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
压轴题型11 圆锥曲线压轴解答题的处理策略命题预测解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开. 高频考法(1)直线交点的轨迹问题(2)向量搭桥进行翻译(3)弦长、面积范围与最值问题(4)斜率之和差商积问题(5)定点定值问题01 直线交点的轨迹问题交轨法解决.【典例1-1】(2024·陕西安康·模拟预测)已知双曲线22:13y C x −=的左、右顶点分别是12,A A ,直线l 与C 交于,M N 两点(不与2A 重合),设直线22,,A M A N l 的斜率分别为12,,k k k ,且()126k k k +=−.(1)判断直线l 是否过x 轴上的定点.若过,求出该定点;若不过,请说明理由.(2)若,M N 分别在第一和第四象限内,证明:直线1MA 与2NA 的交点P 在定直线上.【解析】(1)由题意可知12(1,0),(1,0),0A A k −≠,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+.2024届高考数学专项练习由2213y x y kx m ⎧−=⎪⎨⎪=+⎩消去y ,可得222(3)230k x kmx m −−−−=, 则23k ≠,2212(3)0m k ∆=+−>,即223k m <+,212122223,33km m x x x x k k ++==−−−. 因为()121212*********()()211()1kx m kx m kx x m k x x m k k k k k x x x x x x ⎛⎫⎡⎤+++−+−+=+= ⎪⎢⎥−−−++⎝⎭⎣⎦222222322()2336632133m kmk m k m k k k km kmm k k k ⎡⎤⎛⎫+−+−−⎢⎥ ⎪−−⎝⎭⎢⎥===−⎢⎥++−−+⎢⎥−−⎣⎦, 所以2m k =−,故直线l 的方程为(2)y k x =−,恒过点(2,0). (2)由题可知,直线1MA 的方程为11(1)1y y x x =++,直线2NA 的方程为22(1)1yy x x =−−,因为2121121212121212(1)(2)(1)2211(1)(2)(1)22y x x x x x x x x x y x x x x x x x +−+−+−+===−−−−−−+ 1212112121()322()2x x x x x x x x x x ++−−=−+++21221269333233k x k k x k −−−−==−++− 所以12x =,故点P 在定直线12x =上.【典例1-2】(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅,PA PC⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=− ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上. 【解析】(1)由题意可得(1,)PA x y =−−,(,1)PB x y =−−,(1,1)PC x y =−−, 则22(1)()()(1)PA PB x x y y x y x y ⋅=−⋅−+−⋅−=+−−,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=−⋅−+−⋅−=+−−+, 又2y 是PA PB ⋅,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+−−++−−+=,整理得点(,)P x y 的轨迹方程为23122y x x =−+.(2)由(1)知2131:22C y x x =−+,又31,416a ⎛⎫=− ⎪⎝⎭,∴平移公式为34116x x y y ⎧=−⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=−'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫−=+−++ ⎪ ⎪⎝⎭⎝⎭',即2yx .曲线2C 的方程为2yx .如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b −−=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b+=⎧⎨=−⎩, ()()21111,,OM x y x x ∴==,()()22222,,ON x y x x ==,又MON ∠为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅, 2212120x x x x ∴+>,又12x x b =−,2()0b b ∴−+−>,得0b <或1b >.(3)当2b =时,由(2)可得12122x x k x x b +=⎧⎨=−=−⎩,对2yx 求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x −=−,()2222:2N l y x x x x −=−, 由()()()211112222222y x x x x x x y x x x x ⎧−=−⎪≠⎨−=−⎪⎩,解得交点R 的坐标(,)x y . 满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=−⎩,R ∴点在定直线=2y −上. 【变式1-1】(2024·高三·全国·专题练习)已知椭圆C :22221x y a b +=(0a b >>)过点2,3P,且离2. (1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.【解析】(1)由椭圆过点2,3P,且离心率为22,所以2222223122a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得2284a b ⎧=⎨=⎩,故所求的椭圆方程为22184x y +=.(2)由题意得()0,2A ,()0,2B −,直线MN 的方程4y kx =+,设()()1122,,,M x y N x y ,联立224184y kx x y =+⎧⎪⎨+=⎪⎩,整理得()221216240k x kx +++=,由()22Δ25696120k k =−+>,即232k >,所以1221612kx x k −+=+,1222412x x k =+. 由求根公式可知,不妨设218246k k x −−−,228246k k x −+−= 直线AN 的方程为2222y y x x −−=,直线BM 的方程为1122y y x x ++=, 联立22112222y y x x y y xx −⎧−=⎪⎪⎨+⎪+=⎪⎩,得()()()()2121121121212222222266y x kx x kx x x y y y x kx x kx x x −++−===++++, 代入12,x x ,得222222241644628446112122324481246241246k k k y k k k k y k k k k k −−−−−−++===−+−+−−+−+, 解得1y =,即直线BM 与AN 的交点G 在定直线1y =上.【变式1-2】(2024·全国·模拟预测)已知双曲线C 的中心为坐标原点O ,C 的一个焦点坐标为()10,3F ,离3 (1)求C 的方程;(2)设C 的上、下顶点分别为1A ,2A ,若直线l 交C 于()11,M x y ,()22,N x y ,且点N 在第一象限,120y y >,直线1A M 与直线2A N 的交点P 在直线35y =上,证明:直线MN 过定点. 【解析】(1)由题意得3c =,3ca3a =2226b c a =−=, 故C 的方程为22136y x −=;(2)证明:由已知条件得直线MN 的斜率存在,设直线MN :y kx t =+,联立2226y kx t y x =+⎧⎨−=⎩,消去y 整理得,()222214260k x ktx t −++−=, 由题设条件得2210k −≠,()()2222Δ16421260k t k t =−−−>,则122412kt x x k +=−,21222621t x x k −=−.由(1)得(13A ,(20,3A −, 则直线1A M :1133y y −,直线2A N :2233y y x +=, 11223333y y y y −−=++ 因为直线1A M 与直线2A N 的交点P 在直线35y =上,所以112233353335y y −=++因为2222136y x−=2222222233312y y y x −+−==,即()2222323y y x +=−所以(11211212122233323333523335y y y y y x x y −−−===+.又((()(221212123333y y k x x k t x x t =+++,(((2222222326433212121t t ktk k t t k k k −−=⨯−+=−−−,所以33353335t t −=+,解得5t =,所以直线MN 过定点()0,5.02 向量搭桥进行翻译将向量转化为韦达定理形式求解.【典例2-1】(2024·上海普陀·二模)设椭圆222:1(1)x y a a Γ+=>,Γ2倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点. (1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBFS的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围. 【解析】(1)由Γ24倍,得212a −22(1)a a −=, 又1a >,则2a =故椭圆Γ的方程为2212x y +=.(2)设Γ的左焦点为1F ,连接1CF , 因为CO OB =,所以点B 、C 关于点O 对称, 又0CF AB ⋅=,则CF AB ⊥, 由椭圆Γ的对称性可得,1CF CF ⊥,且三角形1OCF 与三角形OBF 全等,则1112CBFCF FSSCF CF ==⋅,又122211224CF CF CF CF F F ⎧+=⎪⎨+==⎪⎩,化简整理得, 12CF CF ⋅=,则1CBFS=.(3)设11(,)A x y ,11(,)B x y ,00(,)C x y ,又 OA OB CO +=,则012()x x x =−+,012()y y y =−+, 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x mkx m +++−=, 222222168(12)(1)8(21)m k k m k m ∆=−+−=−+,由韦达定理得,122412mk x x k −+=+,21222212m x x k −=+,又121222()212my y k x x m k +=++=+,则02412mkx k =+,02212m y k −=+, 因为点C 在椭圆Γ上,所以222242()2()21212mk m k k −+=++, 化简整理得,22412m k =+,此时,22222218(21)8(21)6(21)04k k m k k +∆=−+=+−=+>,则2222212121()()(1)()AB x x y y k x x =−+−=+−222224221()4()1212mk m k k k−−+−++ 226(21)1k k ++226612k k ++ 令212t k =+,即1t ≥,则(]2266333=33,612k t k t t ++=+∈+, 则AB 的取值范围是3,6.【典例2-2】(2024·贵州安顺·一模)已知双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线方程为3y x =,右焦点F 3 (1)求双曲线C 的标准方程;(2)过点F 的直线l 与双曲线C 交于,M N 两点,()1,0A −.求AM AN ⋅的值.【解析】(1)由双曲线2222:1x y C a b −=的渐近线方程为3y =,可得3b a =又由焦点(c,0)F 32233(3)1c d ==+2c =,又因为222c a b =+,可得1,3a b =2213y x −=.(2)由(1)知2c =,可得(2,0)F ,当直线l 的斜率不存在时,即:2l x =,将2x =代入2213y x −=,可得13y =或23y =−,不妨设(2,3),(2,3)M N −,又由(1,0)A −,可得(3,3),(3,3)AM AN ==−, 所以333(3)0AM AN ⋅=⨯+⨯−=; 当直线l 的斜率存在时,即:(2)l y k x =−,联立方程组22(2)13y k x y x =−⎧⎪⎨−=⎪⎩,整理得2222(3)4430k x k x k −+−−=,设1122(,),(,)M x y N x y ,则2222(4)4(3)(43)0k k k ∆=+−+>,且22121222443,33k k x x x x k k ++==−−, 则222212121212(2)(2)2()4y y k x x k x x k x x k =−−=−++,且1122(1,),(1,)AM x y AN x y =+=+,则1212121212(1)(1)()1AM AN x x y y x x x x y y ⋅=+++=++++ 22212121212()12()4x x x x k x x k x x k =++++−++2221212(12)(1)()41k x x k x x k =−+++++=2222222434(12)(1)4133k k k k k k k +=−⋅++⋅++−−242244222484343412303k k k k k k k k k −+++++−+−==−,综上可得:0AM AN ⋅=.【变式2-1】(2024·全国·模拟预测)如图,已知抛物线()2:20E y px p =>,其焦点为F ,其准线与x 轴交于点C ,以FC 为直径的圆交抛物线于点B ,连接BF 并延长交抛物线于点A ,且4AF BF −=.(1)求E 的方程.(2)过点F 作x 轴的垂线与抛物线E 在第一象限交于点P ,若抛物线E 上存在点M ,N ,使得0MP NP ⋅=.求证:直线MN 过定点.【解析】(1)根据抛物线的性质可知CF p =.设直线AB 的倾斜角为θ,则在Rt CBF △中,cos BF p θ=. 由抛物线的定义知cos AF AF p θ=+,cos BF p BF θ=−, 所以1cos p AF θ=−,cos 1cos pBF p θθ==+,所以2sin cos θθ=. 所以222sin cos p p AB AF BF θθ=+==. 由24AF BF AB BF −=−=,得221cos 2cos 224cos cos p p p p θθθθ−−=⋅==,解得2p =. 所以E 的方程为24y x =.(2)由(1)知()1,2P .设直线MN 的方程为x my n =+,()11,M x y ,()22,N x y .联立抛物线方程,得2,4.x my n y x =+⎧⎨=⎩代入并整理,得2440y my n −−=.则124y y m +=,124y y n =−,且216160m n ∆=+>. 由0MP NP ⋅=,得()()11221,21,20x y x y −−⋅−−=,则()()()()()()()()12121212112211220x x y y my n my n y y ⎡⎤⎡⎤−−+−−=−+−++−−=⎣⎦⎣⎦,得()()()22121212250m y y mn m y y n n ++−−++−+=,所以()()()221424250m n mn m m n n +⨯−+−−⨯+−+=.整理得()()22341n m −=+.当()321n m −=−+,即21n m =−+时,直线MN 的方程为()21x m y =−+,则直线MN 恒过定点()1,2P ,不符合题意.当()321n m −=+,即25n m =+时,直线MN 的方程为()25x m y =++,则直线MN 恒过定点()5,2−.【变式2-2】(2024·山东聊城·二模)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为26. (1)求C 的方程;(2)直线:(0,0)l y kx m k m =+>>与C 交于,M N 两点,与y 轴交于点A ,与x 轴交于点B ,且,AM BM AN BN λμ==. (ⅰ)当12μλ==时,求k 的值;(ⅱ)当3λμ+=时,求点(0,3到l 的距离的最大值.【解析】(1)由题意得222226b c a b a a =⎧⎪⎨−==⎪⎩13b a =⎧⎪⎨=⎪⎩ 所以C 的方程为2213x y +=.(2)(ⅰ)由题意得()0,,,0m A m B k ⎛⎫− ⎪⎝⎭,由12AM BM =,得2OM OA OB =−,即,2m M m k ⎛⎫⎪⎝⎭,由2AN BN =,得2ON OB OA =−,即2,m N m k ⎛⎫−− ⎪⎝⎭, 将,M N 的坐标分别代入C 的方程,得222413m m k +=和222413m m k+=,解得213k =,又0k >,所以3k =(ⅱ)由22,13y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222316330k x kmx m +++−=, 其中()()()222222Δ361231112310k m k m k m =−+−=−+>,设()()1122,,,M x y N x y ,则2121222633,3131km m x x x x k k −−+==++,由(),,0,,,0m AM BM AN BN A m B k λμ⎛⎫==− ⎪⎝⎭,得1122,m m x x x x k k λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以121212112x x m m m m m k x x x x k k k k λμ⎛⎫ ⎪+=+=−+ ⎪ ⎪++++⎝⎭, 由3λμ+=,得()221212230k x x mk x x m +++=,即222222223312303131m k k m k m k k −−++=++, 所以222222223312930m k k m k m k m −−++=, 因此22k m =,又0,0k m >>,所以k m =. 所以l 的方程为()1y k x =+,即l 过定点()1,0−,所以点(0,3−到l 的最大距离为点(0,3−与点()1,0−的距离21(3)2d =+=, 即点(0,3−到l 的距离的最大值为2.03 弦长、面积范围与最值问题1、建立目标函数,使用函数的最值或取值范围求参数范围.2、建立目标函数,使用基本不等式求最值.【典例3-1】(2024·浙江台州·二模)已知椭圆C :229881x y +=,直线l :=1x −交椭圆于M ,N 两点,T 为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标; (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长.【解析】(1)椭圆的标准方程为2218198x y +=,因为819988−=,所以焦点坐标为320,⎛ ⎝⎭. (2)将=1x −代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M −,()1,3N −−, 直线MT 的方程为()3313y x =−−−,即3490x y +−=, 设圆Q 方程为()222x t y r −+=,由于内切圆Q 在TMN △的内部,所以1t >−, 则Q 到直线MN 和直线MT 的距离相等,即223409134t t r +⨯−+==+,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫−+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =−+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率.由圆Q 21132321k k ⎛⎫−+ ⎪⎝⎭=+,化简得:2812270k k +−=,则121232278k k k k ⎧+=−⎪⎪⎨⎪=−⎪⎩,由()122139881y k x x y ⎧=−+⎨+=⎩得()()222111119816384890k x k k x k k ++−+−−=, 可得21121848989A P A k k x x x k −−==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫−−−−+=−+=−+= ⎪++⎝⎭()()()111113271218271833271291232k k k k k −−−+−===−−+−.同理22222848989B k k x k −−=+,32B y =−,所以直线AB 的方程为32y =−, 所以AB 与圆Q 相切,将32y =−代入229881x y +=得7x =所以7AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB 的面积1319272222ABC S m =⨯=⨯△, 解得67m =.所以PAB 的周长为67.【典例3-2】(2024·高三·浙江金华·阶段练习)设抛物线()2:20C y px p =>,直线=1x −是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l 与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点. (1)求抛物线C 的方程; (2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程. 【解析】(1)因为=1x −为抛物线的准线,所以12p=,即24p =, 故抛物线C 的方程为24y x = (2)如图,设l :1x ty =−,()()1122,,,M x y N x y , 联立24y x =,消去x 得2440y ty −+=,则()2Δ1610t =−>,且121244y y t y y +=⎧⎨=⎩,又AM :()1111y ny n x x −−=−−,令=1x −得()1121,1y n P n x ⎛⎫−−− ⎪−⎝⎭, 同理可得()2221,1y n Q n x ⎛⎫−−− ⎪−⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤−−−−+=−+−=−+⎢⎥−−−−⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty −−+−−=−−⋅−,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t −−++−=−=−=−++−,故BP BQ =.(3)由(2)可得:()()1222122222221nt y n y n S PQ ty ty t −−−==−=−−−22212211141212221nt S MN d t t t nt t −==++=−−+,由122S S =,得:212t −=,解得3t = 所以直线l 的方程为310x +=.【变式3-1】(2024·上海闵行·二模)如图,已知椭圆221:14x C y +=和抛物线()22:20C x py p =>,2C 的焦点F 是1C 的上顶点,过F 的直线交2C 于M 、N 两点,连接NO 、MO 并延长之,分别交1C 于A 、B 两点,连接AB ,设OMN 、OAB 的面积分别为OMN S △、OABS.(1)求p 的值; (2)求OM ON ⋅的值; (3)求OMNOABS S 的取值范围. 【解析】(1)椭圆221:14x C y +=的上顶点坐标为()0,1,则抛物线2C 的焦点为()0,1F ,故2p =.(2)若直线MN 与y 轴重合,则该直线与抛物线2C 只有一个公共点,不符合题意, 所以直线MN 的斜率存在,设直线MN 的方程为1y kx =+,点()11,M x y 、()22,N x y ,联立214y kx x y=+⎧⎨=⎩可得2440x kx −−=,216160k ∆=+>恒成立,则124x x =−,221212121241344x x OM ON x x y y x x ⋅=+=+=−+=−.(3)设直线NO 、MO 的斜率分别为1k 、2k ,其中10k >,20k <,联立12244y k x x y =⎧⎨+=⎩可得()221414k x +=,解得2141x k =+ 点A 在第三象限,则2141A x k =+点B 在第四象限,同理可得2241B x k =+,且121212121164y y x x k k x x ===− 121222124141OMN OAB B AOM ONx x x x S S OB OA x x k k ⋅⋅⋅===⋅⋅++()()2221212114141424k k k k ++++2121124224k k ≥⋅+, 当且仅当112k =时,等号成立. OMNOABS S 的取值范围为[)2,+∞. 【变式3-2】(2024·辽宁·二模)已知点P 为双曲线22:14x E y −=上任意一点,过点P 的切线交双曲线E 的渐近线于,A B 两点. (1)证明:P 恰为AB 的中点;(2)过点P 分别作渐近线的平行线,与OA 、OB 分别交于M 、N 两点,判断PMON 的面积是否为定值,如果是,求出该定值;如果不是,请说明理由;【解析】(1)由切线不可能平行于x 轴,即切线的斜率不可能为0, 设切线方程为:l x ty m =+,联立方程组2214x ty m x y =+⎧⎪⎨−=⎪⎩,整理得222(4)240t y tmy m −−+=+, 所以()()222Δ24(4)40tm t m =−−−=,可得2240t m +−=,即224m t =−,所以22220m y tmy t −++=,即2()0my t −=,所以t y m =,则2t x m m=+,所以点2(,)t tP m m m+,又由双曲线22:14x E y −=的渐近线方程为12y x =±,联立方程组12y xx ty m⎧=⎪⎨⎪=+⎩,可得2,22m m x y t t ==−−,即2(,)22m m A t t −−, 联立方程组12y xx ty m⎧=−⎪⎨⎪=+⎩,可得2,22m m x y t t −==++,即2(,)22m m B t t −++,所以222222244422244m mm tm m tmm m t t t t m m+++−−+====−− 222224m mtm tm t t t t m m−+−+===−,所以AB 的中点坐标为4(,)t m m又因为2224t t m m m m m++==,所以4(,)t P m m ,所以点P 与AB 的中点重合.(2)由2(,)22m m A t t−−,2(,)22m mB t t −++, 可得2222225()()22(2)m m m OA t t t =+=−−−,2222225()()22(2)m m m OB t t t −=+=+++, 所以44422222425252525[(2)(2)](4)m m m OA OB t t t m ⋅====−+−,即5OA OB =, 又由22223322224m m m m m OA OB t t t t t−⋅=⨯+⨯==−+−+−,可得3cos 5OA OB AOB OA OB ⋅∠==, 所以24sin 1cos 5AOB AOB ∠=−∠=, 所以114sin 52225AOBSOA OB AOB =∠=⨯⨯=, 因为P 为AB 的中点,所以112122PMON AOBS S ==⨯=, 所以四边形PMON 的面积为定值1.04 斜率之和差商积问题1、已知00(,)P x y 是椭圆22221x y a b +=上的定点,直线l (不过P 点)与椭圆交于A ,B 两点,且0PA PBk k +=,则直线l 斜率为定值2020b x a y .2、已知00(,)P x y 是双曲线22221x y a b−=上的定点,直线l (不过P 点)与双曲线交于A ,B 两点,且0PA PBk k +=,直线l 斜率为定值2020b x a y −.3、已知00(,)P x y 是抛物线22y px =上的定点,直线l (不过P 点)与抛物线交于M ,N 两点,若0PA PB k k +=,则直线l 斜率为定值0p y −. 4、00(,)P x y 为椭圆222:x y a bΓ2+=1)0,0(a b >>上一定点,过点P 作斜率为1k ,2k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点2000222(,)y b x x y aλλ−−−; (2)若2122()b k k a λλ⋅=≠,则直线MN 过定点2222002222(,)a b a b x y a b a b λλλλ++−−−.5、设00(,)P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线AB ,CD 交椭圆222:x y a b Γ2+=1)0,0(a b >>于A 、B 、C 、D ,直线AB ,CD 的斜率分别为1k ,2k ,弦AB ,CD 的中点记为M ,N .(1)若12(0)k k λλ+=≠,则直线MN 过定点2002(,)y b x x aλλ−−;(2)若2122()b k k a λλ⋅=≠,则直线MN 过定点22002222(,)a x b y a b a b λλλ−−.6、过抛物线22(0)y px p =>上任一点00(,)P x y 引两条弦PA ,PB ,直线PA ,PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022(,)y px y λλ−−.【典例4-1】(2024·上海徐汇·二模)已知椭圆22:143x y C +=,12A A 、分别为椭圆C 的左、右顶点,12F F 、分别为左、右焦点,直线l 交椭圆C 于M N 、两点(l 不过点2A ).(1)若Q 为椭圆C 上(除12A A 、外)任意一点,求直线1QA 和2QA 的斜率之积; (2)若112NF F M =,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是12k k 、,且1294k k =−,求证:直线l 过定点.【解析】(1)在椭圆 22:143x y C +=中,左、右顶点分别为12(2,0)(2,0)A A −、,设点()000,(2)Q x y x ≠±,则12202000220000314322444QA QA x y y y k k x x x x ⎛⎫− ⎪⎝⎭⋅=⋅===−+−−−. (2)设()()1122,,,M x y N x y ,由已知可得1(1,0)F −,122111(1,)(+1,)NF x y F M x y =−−−=,,由112NF F M =得2211(1,)2(+1,)−−−=x y x y ,化简得2121=322x x y y −−⎧⎨=−⎩代入2222143x y +=可得22114(32)(32)1−−−+=x y ,联立2211143x y +=解得117=435=x y ⎧−⎪⎪⎨⎪⎪⎩由112NF F M =得直线l 过点1(1,0)F −,73(,5)48−N , 所以,所求直线方程为5=1)y x ±+.(3)设()()3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t =+(2t ≠),联立22143x my t x y =+⎧⎪⎨+=⎪⎩,可得()2223463120m y mty t +++−=,由2222364(34)(312)0m t m t ∆=−+−>,得2234t m <+.由韦达定理,得234342263123434,−+=−=++mt t y y y y m m .1294k k =−,34349224∴⋅=−−−y y x x . 可化为()()343449220y y my t my t ++−+−=, 整理即得()()223434499(2)9(2)0my ym t y y t ++−++−=,()222223126499(2)9(2)03434t mt m m t t m m −⎛⎫∴+⨯+−−+−= ⎪++⎝⎭,由20t −≠,进一步得2222(49)(2)183(2)03434m t m tt m m ++−+−=++,化简可得16160t −=,解得1t =, 直线MN 的方程为1x my =+,恒过定点(1,0).【典例4-2】(2024·全国·模拟预测)已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为()(),,2,2A B C a b D a b −,直线AC 的斜率为12,直线AC 与椭圆E 交于另一点G ,且点G 到x 轴的距离为43. (1)求椭圆E 的方程.(2)若点P 是E 上与点,A B 不重合的任意一点,直线,PC PD 与x 轴分别交于点,M N . ①设直线,PM PN 的斜率分别为12,k k ,求2112k k k k −的取值范围. ②判断22||AM BN +是否为定值.若为定值,求出该定值;若不为定值,说明理由.【解析】(1)由题意知,(),0A a −.由直线AC 的斜率为12()2012b a −=,所以2a b =. 直线AC 的方程为()12y x a =+. 设(),G s t ,则0,0s t >>.由点G 到x 轴的距离为43,得43t =. 由点G 在直线AC 上,得()4132s a =+,所以83s a =−.由点G 在椭圆E 上,得2222843312a a a⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭+=,解得2a =.所以2b =.所以椭圆E 的方程为22142x y+=.(2)①设()00,P x y (020y ≤<或002y < 由(1)知,()()2,2,2,2C D −, 则00120022,22PC PD y y k k k k x x −−====−+, 所以0021121200002211442222x x k k k k k k y y y y −+−−=−=−==−−−−. 由020y −<或002y <≤得02222y −<或02222y <−≤ 所以0442222y −<−或0424222y <≤+− 故2112k k k k −的取值范围是)(422,22,422⎡−⋃+⎣. ②由①知2200142x y +=,即2220004x y y +=−.设()()12,0,,0M x N x . 因为,,P C M 三点共线, 所以00120222y x x −−=−−,得0001002422222x y x x y y −+−=+=−−.因为,,P D N 三点共线,所以00220222y x x −−=++, 得0002002422222x x y x y y −−−−=−=−−.所以()()222222000012002222222222y x x y AM BN x x y y ⎛⎫⎛⎫−−−+=++−=++−= ⎪ ⎪−−⎝⎭⎝⎭()220002008816822x y y y y +++=−−()()()()()2000220000848221616882222y y y yy y y y y −+−++=++=−−−−()0000821681622y y y y −+++=−−.故22||AM BN +为定值16.【变式4-1】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b −=>>2()3,1−在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点. (1)求双曲线C 的方程;(2)若()2,0M −,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P −,直线AP 交直线2x =−于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k −为定值.【解析】(1)由双曲线2222y :1x C a b −=2,且()3,1M −在双曲线C 上,可得222229112a b c e a c a b ⎧−=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得228,8a b ==,∴双曲线的方程为22188x y −=.(2)双曲线C 的左焦点为()4,0F −,当直线l 的斜率为0时,此时直线为0y =,与双曲线C 左支只有一个交点,舍去; 当直线l 的斜率不为0时,设:4l x my =−,联立方程组2248x my x y =−⎧⎨−=⎩,消x 得()221880m y my −−+=,易得Δ0>, 设()()1122,,,A x y B x y ,则12122288,011m y y y y m m +==<−−,可得11m −<<, ∵()()11222,,2,MA x y MB x y =+=+,则()()()()211212122222MA MB x x y y my my y y ⋅=+++=−−+()()()22212122281161244411m mm y y m y y m m +=+−++=−+=−−−,即0MA MB ⋅≠,可得MA 与MB 不垂直,∴不存在直线l ,使得点M 在以AB 为直径的圆上. (3)由直线()1:24AP y k x −=+,得(12,22)Q k −+, ∴2121222222222y k y k k x my −−−−==+−,又11111224PAy y k k x my −−===+,∴()()()()12121121121212222222222y my my y k y y k k k my my my my −−−−−−−−−=−=−− ()2111112224222my y my mk y my my −−+++=−,∵1112y k my −=,∴1112k my y =−,且1212y y my y +=, ∴()()()1212121212122222m y y y y k k my my y y y −−−===−−+−,即12k k −为定值.【变式4-2】(2024·全国·模拟预测)已知双曲线2222:1(0,0)x y C a b a b−=>>的左、右焦点分别为12,F F ,从下面3个条件中选出2个作为已知条件,并回答下面的问题:①点()32,1P −在双曲线C 上;②点Q 在双曲线C 上,1290QF F ∠=︒,且113QF =;③双曲线C 的一条渐近线与直线33y x =−垂直. (1)求双曲线C 的方程;(2)设,A B 分别为双曲线C 的左、右顶点,过点()0,1−的直线l 与双曲线C 交于,M N 两点,若AMBNk a k =−,求直线l 的斜率.【解析】(1)选①②,因为点()32,1P −在双曲线C 上,所以221811a b −=, 由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,联立222181113a b b a ⎧−=⎪⎪⎨⎪=⎪⎩,所以3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=;选①③, 由①,得221811a b −=,由③,得31ba−⨯=−, 联立22181131a b b a⎧−=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=,选②③,由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,又由③,得31ba−⨯=−,联立21331b a b a⎧=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=.(2)依题意可知()()3,0,3,0A B −,易知直线l 的斜率存在,设直线l 的方程为1y kx =−,()()1122,,,M x y N x y ,联立22119y kx x y =−⎧⎪⎨−=⎪⎩,消去y 并整理,得()221918180k x kx −+−=, 由()()()222Δ(18)4191836290k k k =−−⨯−=−>,且2190k −≠,得229k <且219k ≠,所以1212221818,1919k x x x x k k +=−=−−−, 又221119x y −=,即221199x y −=,则1111339y x x y −=+, 所以()()11121122122233339933AMBNy x x x k x y y y k y y x x −−−+===−−()()()()()121212122121212393991191x x x x x x x x kx kx k x x k x x −++−++==−−⎡⎤−++⎣⎦2222222218183996119193911818911919kk k k k k k k k k −+⨯+−+−−===−−⎛⎫−++ ⎪−−⎝⎭, 整理得218310k k −−=,解得16k =−或13k =(舍去),故直线l 的斜率为16−.05 定点定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x −=−或截距式y kx b =+来证明. 一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m . ③参数无关找定点:找到和k 没有关系的点.【典例5-1】(2024·全国·模拟预测)已知离心率为23的椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,点P 为椭圆C 上的动点,且12A PA 面积的最大值为35():20l x my m =−≠与椭圆C 交于,A B 两点,点()1,0D −,直线,AD BD 分别交椭圆C 于,G H 两点,过点2A 作直线GH 的垂线,垂足为M . (1)求椭圆C 的方程.(2)记直线GH 的斜率为k ,证明:km 为定值.(3)试问:是否存在定点N ,使MN 为定值?若存在,求出定点N 的坐标;若不存在,说明理由. 【解析】(1)由题意,得22235,2,3,ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩解得2229,5,4.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为22195x y +=. (2)证明:设()()()()11223344,,,,,,,A x y B x y G x y H x y . 又()1,0D −,所以可设直线AD 的方程为1111x x y y +=−. 联立椭圆方程与直线AD 的方程,得112211,1.95x x y y x y +⎧=−⎪⎪⎨⎪+=⎪⎩ 消去x ,得()()222211111519101400x y y x y y y ⎡⎤++−+−=⎣⎦. 又2211195x y +=,所以22115945x y +=,可得()()2211115140x y x y y y +−+−=.由根与系数的关系,得2113145y y y x −=+,则13145y y x −=+,所以11131111459155x y x x y x x +−−−=⋅−=++,同理,得224422594,55x y x y x x −−−==++. 从而直线GH 的斜率()()()()()()2112214321214312212144454555595959559555y y y x y x y y x x k x x x x x x x x x x −−−+−+−++====−−−−−++−++−++()()()122112454516y x y x x x +−+−.又11222,2x my x my =−=−, 所以()()()()()1221121212434312316164y my y my y y k x x x x m +−+−===−−,即34km =,为定值. (3)由(2)可得直线GH 的方程为11114594355y x m x y x x ⎛⎫+=⋅+− ⎪++⎝⎭. 由椭圆的对称性可知,若直线GH 恒过定点,则此定点必在x 轴上, 所以令0y =,得()()()()()11111111116235916595135535353x x my x x x x x x x +−+++=−===++++.故直线GH 恒过定点T ,且点T 的坐标为1,03⎛⎫⎪⎝⎭.因为2A M GH ⊥,垂足为M ,且()23,0A ,所以点M 在以2A T 为直径的圆上运动.故存在点5,03N ⎛⎫⎪⎝⎭,使21423MN A T ==.【典例5-2】(2024·黑龙江双鸭山·模拟预测)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦距为25点3)D 在C 上. (1)求C 的方程;(2)直线:1l x my =+与C 的右支交于A ,B 两点,点E 与点A 关于x 轴对称,点D 在x 轴上的投影为点G . (ⅰ)求m 的取值范围; (ⅱ)求证:直线BE 过点G .【解析】(1)由已知得222251631a b a b ⎧+=⎪⎨−=⎪⎩,解得224,1a b ==,所以C 的方程为2214x y −=.(2)(i )设()11,A x y ,()22,B x y ,则()11,E x y −,联立22144x my x y =+⎧⎨−=⎩, 消去x 得()224230m y my −+−=,则240m −≠,()()222Δ41241630m m m =+−=−>,解得||3m >||2m ≠.又l 与C 的右支交于A ,B 两点,C 的渐近线方程为12y x =±,则11||2m >,即0||2m <<, 所以|m 的取值范围为(3,2). (ii )由(i )得12224my y m +=−−,12234y y m −=−, 又点3)D 在x 轴上的投影为(4,0)G ,所以()224,GB x y =−,()114,GE x y =−−, 所以()()122144x y x y −+−()()122133my y my y =−+−()121223my y y y =−+,223223044mm m m −−=⋅−⋅=−−, 所以//GB GE ,又GB ,GE 有公共点G ,所以B ,G ,E 三点共线,所以直线BE 过点G .【变式5-1】(2024·陕西西安·一模)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形,点23P ⎝⎭在椭圆E ,过点2F 作互相垂直且与x 轴不重合的两直线AB ,CD 分别交椭圆E 于A ,B 和点C ,D ,且点M ,N 分别是弦AB ,CD 的中点.(1)求椭圆E 的标准方程;(2)若()0,1D ,求以CD 为直径的圆的方程;(3)直线MN 是否过x 轴上的一个定点?若是,求出该定点坐标;若不是,说明理由. 【解析】(1)因为椭圆2222:1(0)x y E a b a b +=>>经过点23P ⎝⎭, 且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形, 可得b c =,则22222a b c b =+=,所以2223122b b+=⨯,解得222,1a b ==, 所以椭圆E 的标准分别为2212x y +=.(2)由(1)得1(1,0),(0,1)F D −,所以直线CD 的方程为1x y +=,联立方程组22112x y x y +=⎧⎪⎨+=⎪⎩,解得41,33x y ==−或0,1x y ==,所以41(,)33C −, 则CD 的中点为21(,)33N 且423CD =CD 为直径的圆的方程为22218()()339x y −+−=. (3)设直线AB 的方程为1x my =+,且0m ≠,则直线CD 的方程为11x y m=−+, 联立方程组22112x my x y =+⎧⎪⎨+=⎪⎩,整理得22(2)210m y my ++−=, 设1122(,),(,)A x y B x y ,则0∆>且12122221,22y y y y m m +=−=−++, 所以12121224(1)(1)()22x x my my m y y m +=+++=++=+, 由中点坐标公式得222(,)22mM m m −++, 将M 的坐标中的用1m −代换,可得CD 的中点为2222(,)2121m mN m m ++,所以232(1)MN mk m =−,所以直线MN 的方程为22232()22(1)2m m y x m m m +=−+−+,即23(1)12m y x m =−−,则直线MN 过定点2(,0)3. 【变式5-2】(2024·浙江·二模)已知双曲线()2222:10,0x y C a b a b−=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点. (1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标. 【解析】(1)设双曲线C 的两渐近线方程分别为b y x a=,by x a =−,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b a ccc −−+⨯==,由题意可得:222222229465941a b c b a c a b ⎧+=⎪⎪−⎪=⎨⎪⎪−=⎪⎩,解得23a =,22b =, 所以双曲线C 的方程为22132x y −=.(2)设直线1l 的方程为(5y k x =, 由1l ,2l 互相垂直得2l 的方程(15y x k=−, 联立方程得(225132y k x x y ⎧=⎪⎨⎪−=⎩,消y 得()222223651560k x k x k −−−−=,0∆>成立,所以212352M x x k x +=,(255M M ky k x == 所以点M 坐标为23525k k ⎝⎭,联立方程得(2215132y x k x y ⎧=−⎪⎪⎨⎪−=⎪⎩,所以34352N x x x +==(1255N N k y x k −=−=, 所以点N 坐标为223525,2323k k k ⎛⎫− ⎪ ⎪−−⎝⎭,根据对称性判断知定点在x 轴上, 直线MN 的方程为()N MM M N My y y y x x x x −−=−−,则当0y =时,222223525352523232323351252525M N N M N M k k kx y x y k k k k x y y kk k −−−−−−===−−−−−−所以直线MN 恒过定点,定点坐标为()35,0−.1.已知椭圆Γ:()222210x y a b a b +=>>的上顶点为()0,1A ,离心率3e =()2,1P −的直线l 与椭圆Γ交于B ,C 两点,直线AB 、AC 分别与x 轴交于点M 、N .(1)求椭圆Γ的方程;(2)已知命题“对任意直线l ,线段MN 的中点为定点”为真命题,求AMN 的重心坐标;(3)是否存在直线l ,使得2AMN ABC S S =△△?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.(其中AMNS、ABCS分别表示AMN 、ABC 的面积)【解析】(1)依题意1b =,3c e a ==222c a b =−, 解得2a =,所以椭圆Γ的方程为2214x y +=;(2)因为命题“对任意直线l ,线段MN 的中点为定点”为真命题,。
高考数学压轴题解题技巧和方法错题重做:临近考试,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。
错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。
回归课本:结合考纲考点,采用对账的方式,做到点点过关,单元过关。
对每一单元的常用方法和主要题型等,要做到心中有数;结合错题重做,尽可能从课本知识上找到出错的原因,并解决问题;结合题型革新,从预防冷点突爆、实施题型改善出发回归课本。
2高考解题技巧一高考数学压轴题解题技巧和方法:大量的看题。
不做,就是审完脑海里想思路!如果有思路就过掉,看下一个题!有点模糊的思路看看答案思路印证一下,对了,过掉,不对,抄到错题集上,按上面提到的两个本子分别填写,扩充错题库! 第二阶段的最后一步跟第三阶段的第一步是紧密联系的,如果没有那个把思路写下来的过程,你这个阶段凭空想思路也是很难受的! 但想想考试时也是凭空想思路,所以这个想思路的过程是必须要做的! (第三阶段的第一步属于脑部休息,可以做题做烦的时候,心情不好不想做题的时候,天气不好没有状态的时候,快放假没有心情复习的时候去做!不浪费时间还对提升数学有帮助!)经过前面的积存,大概一个月左右吧!就开始实战了,天天做一套模拟卷!限时,而且是100或90分钟!因为必须练到给自己预留检查时间的做题速度!不要死啃难题,果断放弃,一道大题最后一问四分可能用15分钟做不出来,如果用这15分钟检查出一道选择或填空你就不亏了,检查两个你就赚大了!保证写出来的都是对的!空下的都是不会的!把粗心丢的分作为自己提升分数的主要方向,加上前一阵对知识点的查漏补缺,你的知识死角会越来越少,只要把握住会的,就一定有庞大飞跃!每套真正考场做的卷子(指老师批改过给过分的)都储存在一个文件夹里(几块一个)用于第一阶段的归纳分析总结用,而且考前看这个效果会好的惊人,一是让你看到了你当时粗心被扣分的题,让你联想到你后悔的咬牙切齿的时候,会增加你考试的细心度。