华中科技大学流体力学第四章_2全解
- 格式:ppt
- 大小:1.13 MB
- 文档页数:34
严新华主编《水力学(修订本)》教材(科技文献出版社2001年版)部分习题参考答案第一章 习题答案1-1 水的运动粘性系数s m /10006.126-⨯=ν;空气的动力粘性系数s Pa ⋅⨯=-51081.1μ。
1-2 活塞移动速度s m V /49.0=。
1-3 动力粘性系数s Pa ⋅=151.0μ。
1-4 2/5.11m N =τ。
1-5 阻力矩m N M ⋅=6.39。
第二章 习题答案2-1(a )图中2/6.68m KN p A =;绝对压强2/93.169m KN p A='。
(b )图中22/4.29,0,/6.19m KN p p m KN p A B C -===;绝对压强222/93.71,/33.101,/93.120m KN p m KN p m KN p AB C ='='='。
2-2 20/4900m N p -=;液面真空值20/4900m N p V =。
2-3(1)2/54.115m KN p A =';2/47.17m KN p A =。
(2)压力表读数m h m KN p M 213.1,/63.92==。
2-4 A 点表压强2/8.9m KN p A -=;液面空气真空度2/6.19m KN p V =。
2-5 m H 40.0=。
2-6 cm h 1284=。
2-7 O H 84.172mmh V =。
2-8 ①2/22.185m KN p p B A =-;②2/42.175m KN p p B A =-。
2-9 ⑴21/86.1m KN p p B A -=-为油时:ρ;⑵21/784.0m KN p p B A -=-为空气时:ρ。
2-10 ⎪⎭⎫⎝⎛-='b a 1ρρ;gH b a p p BA ρ=-。
2-11 241/1084.118m N p ⨯=。
2-12 )/3.101(/84.37822m KN p m KN p a =='取:。
第四章 流体运动学和流体动力学基础4-15如图所示为一文丘里管和压强计,试推导体积流量和压强计读数之间的关系式。
解:对同在一条流线上的1、2两点列伯努利方程gu g p z g u g p z 2222222111 设测压管左侧液面坐标为z 3,1、2点的静压力满足gH H z z g p z z g p m 322311H z g p z g p m12211 代入伯努利方程可得4241/1/1124d d gH q m V4-16按图所示的条件求当H =30cm 时的流速u 。
解:设皮托管入口前方未受扰动处一点为点1,皮托管入口处一点为点2,由静压强分布可知x d g p p w 231x d H g p p w 242 gH p p w 8.043由以上三式,可得gH p p w 2.012由于1,2两点处于同一条流线上,对其列伯努利方程gp g u g p w w 2212 可得s m gH gp p g u w /084.13.08.94.04.0212 4-22如图所示,离心式水泵借一内径d =150mm 的吸水管以q V =60m 3/h 的流量从一敞口水槽中吸水,并将水送至压力水箱。
设装在水泵与吸水管接头上的真空计指示出负压值为39997Pa 。
水力损失不计,试求水泵的吸水高度H s 。
解:(1)取敞口水槽的自由液面与水泵出口之间的流体为控制体,令动能修正系数 1= 2=1,列伯努利方程gV g p H s 202222 吸水管内的平均流速为s m d q V V /943.015.03600/6044222可得 m g V g p H s 036.48.92943.08.910399972232224-29如图所示,一股射流以速度 0水平射到倾斜光滑平板上,体积流量为q V 0。
求沿板面向两侧的分流流量q V 1和q V 2的表达式,以及流体对板面的作用力。
忽略流体撞击的损失和重力影响,射流的压强分布在分流前后都没有变化。
(完整word版)流体力学习题及答案-第四章(完整word版)流体力学习题及答案-第四章亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快~O(∩_∩)O ~第四章流体动力学基本定理及其应用4-1 欧拉运动微分方程和伯努利方程的前提条件是什么,其中每一项代表什么意义?答:(1)欧拉运动微分方程是牛顿第二定律在理想流体中的具体应用,其矢量表达式为:()p f v v t v ?-=??+??ρ1其物理意义为:从左至右,方程每一项分别表示单位质量理想流体的局部惯性力、迁移惯性力、质量力和压力表面力。
(2)伯努利方程的应用前提条件是:理想流体的定常运动,质量力有势,正压流体,沿流线积分。
单位质量理想流体的伯努利方程的表达式为:C gz p=++ρ2V 2,从左至右方程每项分别表示单位质量理想流体的动能、压力能和位能,方程右端常数称流线常数,因此方程表示沿流线流体质点的机械能守恒。
4-2 设进入汽化器的空气体积流量为s m /15.0Q 3=,进气管最狭窄断面直径D=40mm ,喷油嘴直径d=10mm 。
试确定汽化器的真空度。
又若喷油嘴内径d=6mm ,汽油液面距喷油嘴高度为50cm ,试计算喷油量。
汽油的重度3/7355m N =γ。
答:(1)求A 点处空气的速度:设进气管最狭窄处的空气速度为1v ,压力为1p ,则根据流管的连续方程可以得到:()Q v d D =-12241π,因此:()2214dD Qv -=π。
(2)求真空度v p选一条流线,流线上一点在无穷远处F ,一点为A 点;并且:在F 点:0F p p =,0F =v ;在A 点:?1A ==p p ,1A v v =。
将以上述条件代入到伯努利方程中,可以得到:gv p p 20211+=+γγ 因此真空度为:()()222222221101842121d D Q d D Q v p p p v -?=-==-=πρπρρ 若取空气的密度为3/226.1m kg =ρ,那么计算得到:()Pa p v 3222221095.901.004.0114.315.0226.18?=-=。