数学建模:数码相机定位
- 格式:doc
- 大小:248.01 KB
- 文档页数:29
2008年全国大学生数学建模竞赛A题全国一等奖论文数码相机定位摘要本文通过对数码相机的靶标和像平面相互之间关系的分析,利用选取相关对应点和坐标转换的方法,确定靶标圆心在像平面的投影位置,进而完成了系统标定模型,解决了相机的单目定位问题。
对于问题1,为确定靶标上圆的圆心在一个相机像平面的像坐标,需要得到相机像平面中点与靶标上点的对应关系。
通过将相机外部参数和内部参数联立可以建立模型1。
对于问题2,内部参数通过焦距可以得到,而外部参数的获得则需要事先确定一组特殊点。
由于靶标上两条线的交点在像平面上的投影点即为这两条线在像平面上的投影图线的交点,因此我们首先对图像进行边缘提取和椭圆拟合,然后利用程序选择靶标上A 、C 两个圆的外公共切线的切点作为特殊点。
将对应特殊点带入(1)式,就可以求得外部参数。
最后利用几何关系得出靶标上圆心的坐标,带入得到它们在该相机像平面的坐标。
结果为:vA O (-4.4324,-6.7785,0)、vB O (-2.3,-6.4456,0)、vC O (3.39,-5.9757,0)、vD O (-4.5471,3.7096,0)、vE O (2.1965,3.2275,0)。
见图3。
对于问题3,为了检验模型,本文通过计算机模拟数据,可以得到一个内外参数都已知的图像。
进而可以确定这四个顶点在像平面的准确坐标。
根据(1)式可以得到这四个顶点的计算坐标,把计算坐标与准确坐标的距离为对角线的矩形面积称为误差面积,误差率=误差面积/相纸面积。
计算误差率分别为:0.017591%、0.01777%、0.01532%、0.01557%。
从而可知用此模型精确度高,稳定性强。
对于问题4,类似于问题3,进行计算机模拟,得到空间两不同角度拍摄图像,进而得到在此数码相机坐标系下的特殊点坐标。
由于在求像坐标时考虑到了数码相机的透视效应,也就是内部参数,而两个数码相机的空间位置关系仅仅是外部参数的关系,因此可以求得仅考虑外部参数时两个像平面上的坐标,进而做差求出两个数码相机的相对位置坐标。
历届数学建模题目浏览:1992--20091992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年 (A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年 (A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康)1999年 (A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年 (A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年 (A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年 (A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局 0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析赛题发展的特点:1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。
靶标圆心像坐标确定与数码相机定位摘要数码相机实现定位功能,需确定靶标圆心的像坐标。
本文就如何确定靶标圆心像坐标展开了讨论,并给出了计算两部相机相对位置的模型。
在问题一中,我们采用坐标变换的方法建立确定靶标圆心像坐标的模型。
根据坐标系之间的关系,分别通过物坐标系的旋转、平移以及相机坐标系的缩放,引入绕物坐标系三坐标轴旋转的角度θξϕ,,以及物坐标系平移的量度321,,t t t 等参数确定出物坐标系到像坐标系变换的方程,由此即可得到求解靶标圆心像坐标的模型。
求解方程里面的参数时,考虑到计算的方便,我们选择两圆内公切线的交点作为标定点。
计算它们的物坐标与像坐标,代入上述方程即可求得参数的值。
对于问题二,根据圆的有关性质,两条内公切线的斜率(或斜率倒数)分别为连接对应两圆上任意两点连线斜率(或斜率倒数)的最大值和最小值。
基于此,容易求得像坐标系里面对应的内公切线的方程,它们的交点即为标定点的像坐标,对应的物坐标容易得到。
然后将这些标定点的坐标分别代入问题一建立的物坐标系到像坐标系变换的方程,求解得到相应的参数θξϕ,,,321,,t t t 的值。
最后再将各园圆心的物坐标代入上述方程,求得各圆圆心像坐标结果为:A(-49.8577,50.6559),B(-24.5423,49.1824),C(32.5168,48.5784),D(18.3139,-30.6194),E(-60.3038,-30.3856)。
在问题三中,我们选取物坐标系里面一条直线上的9个点,对它们对应的像坐标进行一元线性回归分析,对模型的精度进行检验;最终得到这9个点拟合优度为0.9096非常接近1,说明模型精度较高。
对于模型稳定性的分析,我们将各圆圆心的物坐标向左偏移1mm,考查对应的像坐标的变化;得到各圆心像坐标的偏移量的平均值与圆心物坐标的偏移量的相对误差是2.62%,说明模型稳定性较好。
最后我们对问题一、二中模型进行了检验,在A,C,D,E 四个圆上分别选取一些特定的点,利用它们的像坐标分别求出其对应的物坐标,找到这些物坐标与对应圆心物坐标之间的距离,比较这些距离同圆半径的实际值(即12mm)的差值,最终得到它们相对误差的平均值是1.66%,说明模型的可行性是较高的。
数字图像测量中的像素定位技术数字图像测量技术在现代科技领域中扮演着重要的角色。
它不仅被广泛应用于计算机视觉、机器人导航和虚拟现实等领域,还在医学图像处理、无人驾驶汽车和地质勘探等方面发挥着重要作用。
而在数字图像测量中,像素定位技术是一个至关重要的环节。
像素定位技术是指在数字图像中确定像素位置的一种方法。
对于人类来说,很容易通过视觉系统来识别图像中物体的位置,但对于计算机来说并非如此简单。
计算机不像人类具备直观的视觉能力,而是通过像素定位技术来完成这一任务。
像素定位技术的基本原理是通过数学模型对图像进行处理和分析,从而确定像素的位置。
其中最常用的方法是使用相机进行图像采集,然后使用图像处理算法对图像进行处理,最终得到像素的位置信息。
这个过程需要考虑到相机的畸变、图像的噪声、像素的分辨率等因素。
在实际应用中,像素定位技术通常涉及到相机标定和图像配准两个重要步骤。
相机标定是指通过对已知物体进行拍摄和处理,确定相机的内外参数,从而建立相机模型。
而图像配准则是指将不同相机拍摄得到的图像进行处理,将它们对齐到同一坐标系下。
这两个步骤的完成程度直接影响到像素定位技术的精度和准确性。
在像素定位技术中,还存在着一些常见的问题和挑战。
首先是相机标定的问题,相机标定需要在实验室环境下进行,需要使用高精度的标定板和复杂的标定算法,甚至需要进行多次标定才能达到较高的精度。
其次是图像噪声和畸变的问题,噪声和畸变会对像素定位的结果产生不利影响,因此需要采用适当的图像处理算法来处理和抵消这些问题。
最后是图像配准的问题,图像配准涉及到图像处理和模型匹配等复杂的计算过程,对于大规模图像配准来说,计算复杂度很高。
为了克服这些问题和挑战,研究人员们提出了很多创新的方法和技术。
例如,基于深度学习的像素定位技术可以通过神经网络对图像进行处理,从而提高像素定位的准确性。
另外,基于摄像头阵列的像素定位技术可以同时使用多个摄像头进行图像采集,从而提高图像配准的精度。
数码相机定位摘要本文是双目定位的具体模型和方法进行了研究,分别给出了针孔线性模型、椭圆线性回归模型、RAC模型等并对其进行研究。
对于问题一,在针孔线性模型的基础上,通过对数码相机内外部参数的标定,确定靶标到靶标像的坐标转化关系,建立其坐标转换模型。
对于问题二,利用图像处理所得的像素模拟图表确定20组特征点的坐标在世界坐标系和图像坐标系的坐标,代入上述转换关系来确定系数矩阵M,进而求得圆心在像平面的像坐标,然后利用畸变校正模型对结果进行校正。
结果为左上圆(119.0938,69.6890)、中间圆(155.7689,72.4757)右上圆(234.6404,78.4603)、左下圆(105.4604,185.3796)右下圆(214.5271,184.9706)。
对于问题三,建立椭圆线性回归模型对靶标的像进行拟合,得到的图像中心坐标即为圆心在像平面的像坐标。
结果分析还表明该方法的精度和稳定性都比较好。
结果如下:左上圆(120.0039,69.2536)、中间圆(155.1462,73.0654)右上圆(236.2001,77.8279)、左下圆(103.4572,182.3599)右下圆(216.8469,179.6788)。
模型三与模型一的结果相差最大为2.945%。
很好地验证了模型一的结果的准确性对于问题四,利用RAC模型,确定出单个相机的外部参数,得出其旋转矩阵和平移向量,即完成单个相机的定标,然后利用其几何转化由相机各自的旋转矩阵和平移向量求解出两个相机的相对位置。
关键词:针孔线性模型像素模拟图表畸变校正曲线拟合RAC模型一.问题的重述与分析已知:一靶标和用一位置固定的数码相机摄的它的像,如题目中图3所示。
其中靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。
以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如题目中图1.1所示。
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数码相机相对位置定位方法1.摘要本文给出了空间中两部固定照相机相对位置的标定方法,将照相机成像过程近似为针孔成像过程,使得成像过程中光学中心—像点—物点三点共线,实现了成像的非线性到线性的简化。
文中将标定两部相机相对位置的方法分成三个步骤:第一步,将针孔成像抽象为点投影式映射的过程,根据射影几何中“点线结合的不变性”,具体通过射影前后任意两圆的公切线与圆的切点的唯一性,并且运用“标靶像坐标得切点切线算法”对所给像图片进行操作,求得切点的坐标,每对切点连线的交点即为圆心的像。
求得的结果如下表:点 A B C D E坐标(-194,-193,1577) (-97,-186,1577) (119,-169,1577) (67,113,1577) (-226,114,1577)(单位:像素)第二步,依靠成像过程光学中心—像点—物点三点共线的性质,用已知的像点坐标去标定对应的标靶圆心的坐标,再利用标靶上各点的几何关系,对待定系数进行求解,从而得到标靶圆心坐标;第三步,在已知标靶圆心在两个相机坐标系中的坐标的前提下,利用这些坐标求出坐标系变换矩阵。
再利用求出的变换矩阵求出一部相机在另一相机坐标系中的坐标,这样就可以求出两个相机的相对位置。
此外,根据投影过程中“共线不变性”和“交比不变性”对模型中的第一个步骤的结果进行评价,并对这两种方法的准确性和稳定性进行讨论,其中设计了恰当的算法对方法二进行了全面的评定,得出方法一具有局限性而方法二具有良好得准确性和稳定的结果。
在模型扩展中,我们建立了考虑畸变的非线性模型。
分析了理想像点坐标和实际有畸变的像点坐标之间的函数关系,从而提出了将非线性模型问题转换到线性模型下解决的方案。
关键词:照相机定位针孔模型射影变换交比坐标变换目录数码相机相对位置定位方法 (1)1.摘要 (1)2.问题重述 (3)3.问题分析 (3)4.模型假设 (3)5.符号说明 (4)6.模型建立与求解 (4)1)模型准备: (4)2)模型建立 (4)3)对问题一的解答: (6)a)问题分析: (6)b)算法:标靶像坐标的切线切点算法 (6)c)改进算法:基于罚函数思想的切点切线算法 (7)d)算法分析: (7)4)对问题二的回答: (7)5)求解标靶圆心在照相机坐标系下的坐标 (8)a)问题分析: (8)b)求解方法: (8)6)利用空间坐标变换法确定两部照相机的相对位置: (10)a)问题分析: (11)b)求解过程: (11)7.模型分析及检验 (12)1)对问题三的回答: (12)a)方法一:利用共线不变性对结果的检验 (12)b)方法二:基于射影变换交比不变性的检验方法 (13)2)模型分析 (16)8.模型拓展 (16)9.参考文献 (17)10.附录 (18)2.问题重述题目要求根据标靶的像和标靶进行对系统的标顶,最终找到两台照相机的相对位置。
高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):数码相机定位摘要柯达于1975年开发世界第一部数码相机。
由此,数码照相机便家喻户晓起来。
数码相机定位在交通监管(电子警察)等方面有广泛的应用。
所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。
最常用的定位方法是双目定位,即用两部相机来定位。
对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。
只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。
于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。
标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。
然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。
实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。
而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。
关键词:针孔成像,坐标变换,图像处理,相机镜头畸变,双目定位。
一、问题的提出与重述1.数码相机监视系统是由:景点(scene)方位、相机参数以及方位、成像参数部分组成的系统,系统的标定就是要确定系统各部分的相互关系(主要是几何、数量关系),系统的参数主要有两部分:1)相机的内参数:用于描述相机本身特定属性的参数以及在空间中定位的参数,2)相机的外参数:是指相机相对与世界坐标系(用于公共参考的坐标系)的位置关系,主要由相机坐标系到世界坐标系的变换(平移、旋转)来描述。
确定了相机的内参数和外参数,系统就标定成功。
2.图示u --------景点在像平面中的像;uOC ----------------主光轴(相机坐标系Z轴)上的点在像平面的像点(殴氏坐标);u0a--------主光轴(相机坐标系Z轴)上的点在像平面的像点(仿射坐标);3. 坐标系统Ow XwYwZw ------------ 世界坐标系O c XcYcZc -------------- 相机坐标系O i XiYiZi --------------- 像欧氏坐标系O a XaYaZa --------------- 像仿射坐标系[注:世界坐标系是系统的一个客观的参考系;相机坐标系原点在相机光心(焦点);像的欧氏坐标系与相机坐标系的关系是:Z轴平行且同向,X-Y面平行;像仿射坐标系与像欧氏坐标系关系密切,Z轴,Y轴平行,X轴有个倾斜,主要考虑是,像素的方快长和宽可以不等,而且,视觉效果上可能会出现倾斜情况]。
4.射影几何简介主要介绍如何通过2D图像信息实现3D世界的自动测量,这里的测量主要指,3D中点的空间坐标,以及通过2D图像两点位置关系测量三维距离信息,这里限于针孔模型(thin lens)也称中心投影(central projection)针孔模型的图像信息中,3D中的平行线不在保持平行。
射影空间的概念考虑不包括坐标原点的n+1维空间,R n+1-{0,0,...0},定义一个等价关系,[x1,x2,...,xn]T等价于[x1',x2',...,xn']T当且仅当存在非零数值t,[x1,x2,...,xn,xn+1]T=t*[x1',x2',...,xn',xn+1']T,射影空间P n等于R n+1-{0,0,...0} 关于此等价关系的商空间,射影空间中的点称为齐性类,射影空间中的点的坐标通常用齐性坐标表示为,x*=[x1,x2,...,xn,1]T,最后一个坐标为1,事实上,通过原点的任意直线上的点(原点除外)属于同一个等价类.[于是,对相机坐标系的过原点的任意射线上的点,是等价类, 因为他们的像点相同].于是, 射影空间P n可以和R n建立起一一对应, ,[x1,x2,...,x n,1]T--------[x1,x2,...,x n]T[注:在这样的表示下的好处是,坐标变换中的平移、旋转的表达形式达到一致,后面会看到这一点。
一个射影变换是一个(n+1)*(n+1)矩阵A 使y*=Ax*, 与A相差一个数值因子的变换也是射影变换光学中心、像平面、场景示意图二、求解的思想1. 建立系统的坐标变换描述, 坐标间的位置关系(主要有: 1) 世界坐标系到相机坐标系的平移和旋转变换,2) 相机坐标系到像坐标系的仿射变换, 确定需描述的系统参数.2. 根据已知靶标上的景点坐标与像平面对应的像素坐标,建立方程组,求解方程组确定系统参数.完成系统的初步标定.3. 根据标定的系统,系统参数已知, 计算相应景点的像素坐标用于检验偏差,或采用特殊的坐标系或特殊的位置关系检验系统标定的效果.4. 上述是单相机监视系统, 根据单相机系统, 确定两个相机的摄象机矩阵P,P' 由此, 确定两部相机的相对位置.[注: 把标是平面图形, 因此, 两幅图片存在单应关系, 两幅图片间存在单应矩阵]三、单相机定位系统的描述1. 世界坐标系中的坐标到相机坐标系的坐标的转换:Xw是景点X在世界坐标系中的表示,点X的坐标由世界坐标系转换至相机坐标系的变换为:Xc = R(Xw - t),t 为平移列向量,R为三阶正交矩阵,而Xc 是点X在相机坐标系下的坐标;2. 景点以及对应像点的三维坐标:X的三维成像坐标,的推导:Xc的三维像点Uc 设Xc=[xc,yc,zc]T,Uc = [-fxc/zc,-fyc/zc,-f ]T Uc的坐标推导,见下述示意图(应用成像原理针孔模型)相机坐标系的原点是相机的焦点,则由原点出发的射线上的任何点具有相同的像素坐标,这样的点在相机坐标系下的坐标具有性质:[xc,yc,zc],[xc', yc', zc']对应坐标成比例。
既存在a非零常数,:[xc,yc,zc] = a[xc', yc', zc'],这种关系是定义在相机坐标系下三维空间中点坐标的一个等价关系,利用等价关系将R3等价类的商空间,其中的类中每个景点成像具有相同的二维像素坐标。
3. 三维像点坐标到像素坐标的转换1)OiXiYiZi (像平面欧几里得坐标系):OXY面作为成像像素坐标平面,为此根据像素坐标特点,坐标系原点取在左上角,Z轴与相机坐标系Z轴有相同的指向,相机坐标系的Z轴与像素平面交点是像素平面的主点,像素坐标记为[u0,v0];2)OUVW坐标系(像素平面仿射坐标系):W与Zi相同,V轴是Yi的伸缩,UV面是XiYi面的仿射3)由Xc=[xc,yc,zc]T,Uc = [-fxc/zc,-fyc/zc,-f ]T到[U,V,W]的变换上述的变换矩阵记为K如果已知[u,v]坐标与[xc,yc,zc] 的数据, 有一对点的数据就可以得到两个方程, 对足够的信息量,就可以将参数确定下来4. 景点坐标到像素坐标的变换设世界坐标系转换至相机坐标系的变换为:Xc = R(Xw - t),t 为平移列向量,R为三阶正交矩阵,而Xc 是点X在相机坐标系下的坐标;则有5.建立求解M的方程组上述可建立2k个12元的齐次方程组,可以通过Matlab中的null 函数求解6. K,R,t 矩阵的计算M 是3 行4 列矩阵,前3列构成的方阵是A = KR,后1列为b = -KRt1)利用Matlab中的函数[k,r] = qr(A)可以实现从矩阵A得到,上三角矩阵K,和正交矩阵R;2)t = A -1*b这样就完成了系统的标定。
实现由景点的三维坐标计算像点的像素坐标,但其逆不是一一对应的,原因在于景点与像点是多对一的。
四、标定示例的计算1.取世界坐标系OWXWYWZW原点为靶标中心,靶标平面为XOY面,Z 轴指向相机方向。
于是可确定其上5个圆的圆心在世界坐标系中的坐标,在加上靶标中心的世界坐标系的原点,六个点的坐标列表。
xyz=[2. 靶标上的六点对应的像坐标的确定1) 将靶标的像(题目本身给出的靶标的像就是1024*768分辨率)按1024*768分辨率,建立图像文件(复制到画板中,保存为24色真彩图或256色或16色索引图像,保存到Matlab中work文件夹。
24色真彩图的图像文件没有颜色表,图像矩阵为1024*768*3 大小,256色或16色位图包含图像矩阵1024*768大小,和颜色表分表为256*3,16*3。
2)转换为灰度图像对24位真彩图w = imread('babiaoxiang.bmp') %读出图像矩阵w wgray = rgb2gray(w) % 将w矩阵转换为灰度矩阵(注, w 为1024*768*3, 而wgray 是1024*768)imshow(wgray) % 显示灰度图像对于索引图像(256色或16色色拉图)[w, map] = imread('babiaoxiang.bmp') % 读出图像矩阵和颜色表wgray = ind2gray(w,map) % 转换为灰度矩阵imshow(wgray) % 显示灰度图像3) 转换为二值图像选取适当阈值将灰度图像转换为二值图像n=size(wgray)for i=1:n(1)for j=1:n(2)if (wgray(i,j)<50)wgray(i,j)=0;elsewgray(i,j)=255;endendend4) 提取边缘(1)利用edge函数直接提取边缘(或定义其它提取边缘的算子)wgray=edge(wgray)(2)将边缘点集合定义出来逐个像素判断是否是边缘,是,将像素坐标累计追加到边缘点坐标集合中。