2015数学建模赛题分析及参赛策略
- 格式:ppt
- 大小:1.64 MB
- 文档页数:69
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。
本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。
对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。
通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。
同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。
对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。
对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。
关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。
太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。
在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。
首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。
第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。
得到基于模型的合理结果。
最后,将第四问的实际问题转化数学模型并求解,进而解决问题。
对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。
问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。
同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。
问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。
关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。
2015年数学建模竞赛题目(原创实用版)目录1.2015 年数学建模竞赛概述2.竞赛题目分类及解析3.竞赛题目解答思路及方法4.竞赛对学生的意义和影响正文【2015 年数学建模竞赛概述】2015 年数学建模竞赛,即全国大学生数学建模竞赛,是我国面向全国大学生的一项重要的学科竞赛活动。
该竞赛旨在激发大学生学习数学的积极性,提高他们的创新意识和运用数学知识解决实际问题的综合能力,推动大学数学教学体系、教学内容和方法的改革。
【竞赛题目分类及解析】2015 年数学建模竞赛共有 A、B、C 三个题目,分别涉及不同的领域。
A 题:飞行器设计优化题目要求:根据给定的飞行器参数,建立数学模型,并求解最优设计方案。
解析:此题属于优化问题,需要运用线性规划、非线性规划等相关知识。
B 题:水质监测与评价题目要求:分析给定的水质监测数据,建立评价模型,对水质进行评价。
解析:此题涉及数据处理、统计分析、模糊评价等知识。
C 题:智能家居系统题目要求:设计一个智能家居系统,满足给定的功能需求。
解析:此题需要了解图论、动态规划等知识,以解决网络拓扑结构、任务调度等问题。
【竞赛题目解答思路及方法】1.对题目进行仔细阅读,理解题意,明确题目要求。
2.分析题目涉及的领域和知识点,确定解题思路。
3.利用相关数学方法和工具,建立数学模型。
4.求解模型,得到结果。
5.对结果进行分析和检验,撰写论文。
【竞赛对学生的意义和影响】参加数学建模竞赛,对学生具有重要的意义和影响。
首先,它可以激发学生学习数学的兴趣,提高他们的数学素养。
其次,通过解决实际问题,学生可以锻炼自己的创新能力和团队协作能力。
最后,竞赛成绩优秀的学生,还有机会获得奖学金、保研等优惠政策。
总之,2015 年数学建模竞赛题目涉及多个领域,对参赛学生的知识储备和解题能力提出了较高的要求。
参赛密码(由组委会填写)第十二届“中关村青联杯”全国研究生数学建模竞赛学校参赛队号1.队员姓名 2.3.参赛密码(由组委会填写)第十二届“中关村青联杯”全国研究生数学建模竞赛题目面向节能的单/多列车优化决策问题摘要:本文围绕单/多列车优化决策问题,在合理假设的基础上,利用多岛遗传优化算法和NSGA-Ⅱ多目标优化算法给出了单列车单站点、单列车多站点、多列车多站点的能耗最低运行线路的优化决策,并分析处理了列车发生延误时的优化控制问题。
针对问题一(1),建立了单列车单区间节能优化模型。
首先通过将时间分段-离散的方法,建立了能耗积分方程的数值求解方法,并制定了末端制动策略使得末端速度在规定时间、规定距离上减小为0。
在此基础上,建立了以能耗最低为优化目标,分段数、各分段时间间隔、各段运行工况为决策变量,满足速度、加速度等约束条件的优化模型。
通过多岛遗传算法,对模型进行求解,得到A6-A7段能耗为3.37×107J。
针对问题一(2),建立了单列车多区间节能优化模型。
首先通过理论推导,将时间-最低能耗曲线转换为以最少时间、最低能耗为双目标优化问题的Pareto 前端解集,利用NSGA-Ⅱ多目标优化算法分别得到了A6-A7站,A7-A8站Pareto 前端解集。
其次,在各自能耗-时间Pareto 前端解集中,利用多岛遗传算法,对时间分配进行优化建模,得到A6-A7段运行时间117s,A7-A8段运行时间103s,总能耗为6.8×107J。
针对问题二(1),建立了多列车全区间节能优化模型,在总能耗一定的情况下,再生能源越多,则总能量越少。
基于此,本文首先求解单个列车在整个区间段上的最少能耗,这是对于问题一(2)的推广,区别仅在于将停站时间计入运行时间,没有本质上的区别,本文采用将停站看作除去牵引、巡航、惰行和制动在外的第5 种工况,采用与问题一(2)相同的策略,求得单列车在整个运行区间(A1-A14)上的最低能耗,其它车辆采用相同的运行方式。
“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。