第18讲 函数与方程(学生)
- 格式:doc
- 大小:396.00 KB
- 文档页数:4
函数与方程教案教案:函数与方程一、教学目标:1. 知识与能力:(1)理解函数和方程的概念;(2)掌握函数和方程的基本性质;(3)能够根据实际问题建立函数和方程模型。
2. 过程与方法:(1)讲授与实例演示相结合的教学方法;(2)引导学生独立思考和探究,培养解决实际问题的能力。
3. 情感态度价值观:培养学生对数学知识的兴趣和热爱,提高解决实际问题的能力。
二、教学内容:1. 函数的概念:(1)函数的定义;(2)函数的图象和性质;(3)函数的自变量和因变量。
2. 函数相关的概念:(1)定义域和值域;(2)函数的增减性和奇偶性;(3)函数的图象与方程。
3. 方程的概念:(1)方程的定义;(2)方程的解;(3)实际问题转化为方程。
4. 方程的解法:(1)等式的加减消元法;(2)等式的乘除消元法;(3)方程的解集。
三、教学过程:1. 导入新知识:通过实例引出函数和方程的概念,并让学生思考函数和方程的联系与区别。
2. 讲解函数的定义:(1)讲解函数的定义和符号表示;(2)通过实例演示函数的图象和性质。
3. 探究函数的相关概念:(1)讲解函数的定义域和值域的概念,并通过实例计算;(2)引导学生思考函数的增减性和奇偶性。
4. 引入方程的概念:(1)讲解方程的定义和解的概念;(2)通过实例演示方程的解法。
5. 培养实际问题转化为方程的能力:通过实际问题实例,让学生学会将问题转化为方程,并通过解方程得到答案。
6. 强化训练:设计一定数量的练习题,让学生巩固所学内容,并检查学生的掌握程度。
7. 总结归纳:对本节课所学的内容进行总结和归纳,帮助学生理清思路,掌握学习要点。
四、教学评价:1. 观察学生对函数和方程的理解程度;2. 检查学生在实际问题中能否正确转化为方程;3. 分析学生的解题思路和解题能力;4. 对学生的作业进行批改和评价。
五、教学资源:1. 教材和课件;2. 实物、图片等辅助教具;3. 习题集和参考答案。
初中数学教案:函数与方程的解法一、引言数学是一门抽象而又普遍应用的学科,从初中开始,学生开始接触函数与方程的解法。
函数与方程的解法是数学的基础,也是后续学习数学的重要基石。
本教案旨在帮助初中学生全面了解函数与方程的解法,掌握解题方法和技巧。
二、函数的基本概念与性质1. 函数的定义函数是指两个集合之间存在的特殊关系。
在函数中,每一个自变量对应唯一一个因变量。
函数可用符号表示,常见的表示方式有f(x)、y=f(x)等。
2. 函数的性质函数有一些基本性质,包括定义域、值域、单调性、奇偶性等。
定义域是指函数中自变量的取值范围;值域是指函数中因变量的取值范围;单调性是指函数的增减性质;奇偶性是指函数的对称性质。
三、常见的函数类型与解法1. 一次函数一次函数是指函数的最高次数为1的函数,其表达式可以表示为y=ax+b(其中a和b为常数,且a≠0)。
对于一次函数,我们可以通过求解方程的方法来确定函数的解。
2. 二次函数二次函数是指函数的最高次数为2的函数,其表达式可以表示为y=ax^2+bx+c (其中a、b、c为常数,且a≠0)。
对于二次函数,我们可以通过配方法、因式分解和求根公式等方法来确定函数的解。
3. 对数函数对数函数是指函数的表达式为y=logₐx(其中a为常数,且a>0,且a≠1)。
对于对数函数,我们可以通过变形以及对数的特性来确定函数的解。
4. 指数函数指数函数是指函数的表达式为y=a^x(其中a为常数,且a>0,且a≠1)。
对于指数函数,我们可以通过变形以及指数的特性来确定函数的解。
5. 复杂函数复杂函数是指函数的表达式较为复杂,包含多个函数类型的组合。
对于复杂函数,我们可以通过分解、分步骤求解以及运用函数的性质来确定函数的解。
四、方程的解法1. 一元一次方程一元一次方程是指只有一个未知数,且最高次数为1的方程。
对于一元一次方程,我们可以通过去括号、合并同类项、移项、系数相除的方法来求解方程。
初中数学教案函数与方程初中数学教案函数与方程引言:在初中数学中,函数与方程是一个非常重要的概念。
它们被广泛应用于数学和实际生活中的各种问题。
本教案旨在帮助学生全面理解函数和方程的概念,并通过实际例子和练习来加深他们的认识。
教学目标:1. 理解函数和方程的定义和特性。
2. 能够读取、解释和绘制函数和方程。
3. 能够用函数和方程解决实际问题。
4. 发展分析和推理的能力。
教学准备:1. 教师准备各种函数和方程的例子。
2. 确保教室的黑板或白板干净,并准备好足够的粉笔或白板笔。
3. 复印足够的练习题和作业,以供学生使用。
4. 确保课堂环境安静和适宜学习。
教学过程:I. 函数的介绍 (用一种直观方式解释函数)1. 引入函数的概念,例如通过描述温度与时间的变化、速度与距离的关系等。
2. 定义函数为两个变量之间的关系,其中一个变量的值取决于另一个变量的值。
3. 用表格、图表和图像等方式展示函数的特性。
II. 函数的符号表示1. 引入函数符号表示的概念,例如"f(x)"。
2. 解释符号中的"f"代表函数名称,"x"代表输入值。
3. 通过具体例子帮助学生理解函数符号表示的含义。
III. 方程的介绍1. 引入方程的概念,例如描述两个变量之间的平衡状态。
2. 明确方程中等号的作用,表示两边相等的关系。
3. 通过图像和实际问题解释方程的应用。
IV. 方程的解1. 解释方程的解为能满足方程的变量值。
2. 通过等式两边的变换和化简方法来解方程。
3. 解释方程解的唯一性和多解性。
V. 函数与方程的联系1. 比较函数和方程的共同点和不同点。
2. 解释函数可以转化为方程,方程可以表示为函数的形式。
3. 通过实例演示如何将函数转化为方程,以及如何从方程中找到函数关系。
VI. 应用练习1. 分发练习题和作业,确保学生能够应用所学知识解决各种实际问题。
2. 解答学生在解题过程中遇到的问题,并给予指导和建议。
第18讲 方程求根、韦达定理与待定系数法知识与方法1零值定理设函数()f x 在[],a b 上连续,且()()0f a f b <,则在(),a b 内至少存在一点c ,使得()0f c =2韦达定理(1)设一元二次方程()21200,,ax bx c a x x ++=≠是其2个根,则有1212,b c x x x x a a+=-= (2)设一元三次方程()3212300,,,ax bx cx d a x x x +++=≠是其3个根,则有123122331123,b x x x ac x x x x x x ad x x x a ⎧++=-⎪⎪⎪++=⎨⎪⎪=-⎪⎩(3)设一元n 次方程()1201201200,,,,nn n n n a x a x a x a a x x x --++++=≠是其n 个根,则有()1122121312324210120,,1n n n n n n n n a x x x a a x x x x x x x x x x x x x x a a x x x a -⎧+++=-⎪⎪⎪+++++++++=⎪⎨⎪⎪⎪=-⎪⎩3整系数多项式方程的根 若既约分数q p为整系数多项式方程(12012100,n n n n n a x a x a x a x a a ---+++++=,)121,,,,n n a a a a -∈Z 的根,则0,.n p a q a推论1:首项系数为1的整系数多项式方程的有理根必为整数根.推论2:整系数多项式方程的整数根必为常数项n a 的约数.4待定系数法一般而言,待定系数法解题是依据已知,正确列出等式或方程,即引人一些待定的系数,转化为方程组来解决,通常有两种方法:比较系数法和特殊值法.待定系数法主要用来解决方程问题、函数问题,多项式分解因式、拆分分式、数列求和、复数计算、解几何中求曲线方程、空间图形中求平面法向量、证明组合恒等式等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.使用待定系数法解题的基本步骤如下. 第一步,确定所求问题含有待定系数的解析式; 第二步,根据恒等的条件,列出一组含待定系数的方程; 第三步,解方程组或者消去待定系数,从而使问题得到解决.典型例题【例1】(1)函数()e 23xf x x =+-的零点所在的一个区间是( ).A.1,02⎛⎫-⎪⎝⎭B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.31,2⎛⎫⎪⎝⎭(2)若关于x 的方程24x kx x =+有4个不同的实数【解析】,则k 的取值范围为()A.()0,1B.1,14⎛⎫⎪⎝⎭C.1,4∞⎛⎫+⎪⎝⎭D.()1,∞+【解析】(1)()f x 为增函数,∴可用赋值法验证零值定理,即代入每个选项区间的端点值,判断函数值是否异号.()()()()120011e 2340,02022112320,1e 23e 10221110,,10, C.22f f f f f f x f x -⎛⎫⎛⎫-=+⨯--=<=-< ⎪ ⎪⎝⎭⎝⎭⎛⎫=⨯-==+-=- ⎪⎝⎭⎛⎫⎛⎫<∴∈= ⎪ ⎪⎝⎭⎝⎭存在使得故选(2)24x kx x =+有4个实数解,显然0x =是方程的一个解.下面只考虑0x ≠情形,即当0x ≠时有3个实数解即可. 若0x >,原方程等价于()14kx x =+,显然0k ≠,则()14x x k=+.要使该方程有解,必须0k >,则()2142x k+=+,此时0x >,方程有且必有一解;由此可知当0x <时必须有两解.当0x <时,原方程等价于ー()14kx x =+,即()2142x k-+=+.画出函数图像(注意0x <且4x ≠-),要使该方程有两解,必须满足1044k<-+<,解得1,4k ∞⎛⎫∈+ ⎪⎝⎭,这也是上述几种情况的公共部分.故1,4k ∞⎛⎫∈+ ⎪⎝⎭为所求,【答案】C .【例2】(1)设9k ≥,解关于x 的方程32229270x kx k x k ++++=.(2)已知方程220,0x ax b x cx d ++=++=均无实根,判断()()220x a c x b d ++++=是否有实根.【解析】(1)()322223292729270x kx k x k x k x k x ++++=⋅++++=,将其看成关于k 的二次方程,则()()()2223129427923x x x x ∆=+-+=-,2261832x x k x k x-+-∴=--=或3x k ∴=--或()2226180.x k x +-+=对于方程()2226180x k x +-+=,其中()()()()222226421846274939,0k k k k k k ∆=--⨯⨯=--=-+≥∴∆≥123333,,22k k x k x x ---∴=--==(2)20x ax b ++=无实根,2140a b ∴∆=-<,即24a b <.20x cx d ++=无实根,2240c d ∴∆=-<.,即24c d <.方程()()220x a c x b d ++++=的判别式为()()()2234288a c b d a c b d ∆=+-⨯+=+--由24a b <得282b a -<-;由24c d <得282d c -<-,()()()2222222388222a c b d a c a c a ac c a c ∴∆=+--<+--=-+-=--()()2230,0a c a c -≥∴∆=--≤,而a c ≠,即30∆<,故方程()()220x a c x b d ++++=无实根.【例3】320x ax bx c +++=的3个根分别为a b c 、、,并且a b c 、、是不全为零的有理数,求a b c 、、的值.【解析】由三次方程的韦达定理知(),,(2),(3)a a b c b ab bc ca c abc ⎧=-++⎪=++⎨⎪=-⎩由(3)式得0c =或1ab =-.若1ab =-,代人(2),得1b bc ca =+-.(4)由(1)得()2c a b =-+,代人(4)式,得()()2221231b a b a b a ab b =+---=----.将1a b =-代人,得22122b b b=-⨯-+,整理得432220b b b +-+=试根,发现1-是它的解,从而可得()()31220b b b +-+=. 故1b =-或3220b b -+=.对于方程3220b b -+=,由于左边是首项系数为1的整系数多项式,且易见1,2±±均不是它的根,由整系数多项式方程根的定理及推论可知,此方程没有有理根.而1b =-时,1, 1.a c ==-综上,原问题所求的a b c 、、为1,1,12,10.a a b b c c ==⎧⎧⎪⎪=-=-⎨⎨⎪⎪=-=⎩⎩或【例4】(1)分解因式4322x x x +++.(2)若226541122x xy y x y m ---++可分解为两个一次式的积,求m 的值并将多项式分解因式.【解析】(1)设原式()()2212x mx x nx =++++,则()()()4324322322x x x x m n x mn x m n x +++=+++++++【解法1】比较对应项的系数,得()()1,(2)31,320,4m n mn m n ⎧+=⎪+=⎨⎪+=⎩由(2)(4)消去n ,得1m =-,(5)将(5)代入(2),得2,1,2n m n =∴=-=.故原式()()22122x x x x =-+++.(若设原式()()2212x mx x nx =+-+-展开后比较对应项的系数得关于,m n 的方程组无解,只有上述解法是正确的.) 【解法2】分别用1,1-代替(1)式中的x ,得关于,m n 的方程组.3210,3230,mn m n mn m n +++=⎧⎨--+=⎩ 解这个方程组确定系数,m n 的值为1,2m n =-=(过程略,显然比方法一烦琐). 故原式()()22122x x x x =-+++. (2)设()()()()22226541122234654324x xy y x y m x y k x y l x xy y k l x k l y kl ---++=++-+=--+++-++比较两边对应项的系数,得3211,422,.k l k l kl m +=-⎧⎪-+=⎨⎪=⎩联立(1)与(2)解得5, 2.k l =-=代人(3)得10m =-.∴原式()()25342,10x y x y m =+--+=-强化训练1.已知二次函数()()20f x ax bx c a =++≠,设1212,,x x x x ∈<R ,且()()12f x f x ≠,方程()()()1212f x f x f x ⎡⎤=+⎣⎦有两个不等实根.证明:必有一个实根属于区间()12,x x . 【解析】令,由题意知在上连续,则 且 ()()()()1212g x f x f x f x ⎡⎤=-+⎣⎦()g x R ()()()()()()1112121122g x f x f x f x f x f x ⎡⎤⎡⎤=-+=-⎣⎦⎣⎦()()()()()()2212211122g x f x f x f x f x f x ⎡⎤⎡⎤=-+=-⎣⎦⎣⎦()()()()212121,4g x g x f x f x ⎡⎤⋅=--⎣⎦()()()()1212,0f x f x g x g x ≠∴⋅<方程在必有一个实根,即方程必有实根属于区间. 2.若关于x 的方程4210x x a a +⋅++=有实数解,则a 的取值范围是________. 【解析】【解法1】令,关于的方程有实数解,等价于方程有正解,分下面两种情况:(i )两正解:(ii )正解一非正解:.综上,的取值范围是.【解法2】考查函数,即方程有正解,等价于函数与轴正半轴有交点,等价于 或 综上,的取值范围是.【解法3】由方程变形得 考查函数, 方程有正解,即的取值范围是函数的值域,将函数变形,得 . ∴()0g x =()12,x x ()()()1212f x f x f x ⎡⎤=+⎣⎦()12,x x 2xt =x 4210x xa a +⋅++=210t at a +++=212124(1)0,22 2 222,0,0,1222,101a a a a t t a a a t t a a ⎧⎧∆=-+-+⎪⎪+=->⇔<⇔-<-⎨⎨⎪⎪=+>>-⎩⎩或12101t t a a =+⇔-a (,2]-∞-2()1f t t at a =+++210t at a +++=2()1f t t at a =+++x (0)101f a a =+<⇔<-20,0,2(0)10,1,12224(1)022 2 222a a f a a a a a a a ⎧-⎪⎧⎪⎪=+⇔-⇔--⎨⎨⎪⎪∆=-+-+⎩⎪⎩或a [,2]-∞-210t at a +++=21.1t a t+=-+21()(0)1t f t t t+=->+211t a t+=-+a 21()(0)1t f t t t +=->+221(1)2(1)22()(1)2(0)111t t t f t t t t t t ++-++⎡⎤=-=-=-++->⎢⎥+++⎣⎦220,10,(1)222 2.(1)222211t t t t t t ⎡⎤>∴+>∴++--∴-++--+⎢⎥++⎣⎦的取值范围是. 3.解方程42222112.x x x x x++++= 【解析】原方程可变为令,得,解得. 当时,变为,无实数根. 当,变为,解得. 经检验,为原方程的根.4.已知方程()2241410x a x a +++-=恒有非负的解,求实数a 的取值范围.【解析】【解法1】将原式变形为.设则①,即又(1)式可看作以为自变量的二次函数,则该函数在区间的值域由,得即此实数的取值范围是【解法2】设,要使方程恒有非负数解,则(i)若有一个非负数解,另一负数解,则,即,因此解得; (ii)若有两个非负数解,则 综上,实数的取值范围是. a ∴(,2]-∞-()22221120xx x x+++-=21x u x+=220u u +-=121,2u u ==-211x x+=210,1430x x -+=∆=-=-<212x x+=-2210x x ++=121x x ==-1x =-()2(2)10x a x x +=-2.t x a =+22211151,,2228t t x t a t +-⎛⎫=-==+- ⎪⎝⎭20,10x t ∴-1 1.t -t []1,1-()112f a f ⎛⎫- ⎪⎝⎭51,82a -a 51,.82⎡⎤-⎢⎥⎣⎦22()(41)41f x x a x a =+++-()0f x =(0)0f 2410a -1122a-12120,510,. 820x x a x x ∆⎧⎪⎪>⇒-<-⎨⎪+>⎪⎩a 51,82⎡⎤-⎢⎥⎣⎦5.设,a b c 、为实数,0a ≠且a c ≠,若方程()()222222240a c x b x a c ++++=有实根.证明:方程()200ax bx c a ++=≠有两个不相等的实根.【解析】方程是二次方程.方程有实数根,,即,即.从而即.方程有两个不相等的实数根.6.求作一个一元三次方程,使它的三个根分别是方程3271480x x x -+-=三个根的倒数.【解析】设已知方程的三个根为,则由韦达定理得依题意,所求的三次方程的三个根为.由韦达定理的逆定理知,所求方程为,即. 7.已知一元二次方程20ax bx c ++=有两个大于0、小于1的相异实根,其中a 是正整数,,b c是整数,求a 的最小值.【解析】设方程的两,则,由韦达定理得从而 22,0a c a c ≠∴+>∴()()222222240a c x b x a c ++++=()()()2422224224444160b a cacba c∴∆=-+⋅+=-+()()222222220b a c b a c ⎡⎤⎡⎤++-+⎣⎦⎣⎦()()22222220,20,b a c b a c ++>∴-+()222 2ba c +222()0() ,2,a c a c a c ac ->≠∴+>2 4, b ac >240b ac ->∴20(0)ax bx c a ++=≠,,αβγ7,14,8.αβγαβαγβγαβγ++=⎧⎪++=⎨⎪=⎩111,,αβγ1111478411111178111118a βγαγαβαβγαβγγβααβαγβγαβγαβγβγ⎧++++===⎪⎪⎪++⋅+⋅+⋅==⎨⎪⎪⋅⋅==⎪⎩∴327710488x x x -+-=32814710x x x -+-=αβ、0,1,αβαβ<<≠,.b ac a αβαβ⎧+=-⎪⎪⎨⎪=⎪⎩()()()()11111.b c a b c a a aαβαβαβ--=-++=++=++,即同理,. 从而即 设二次函数,由于的图像是开口向上的抛物线.又与轴的两个交点在0,1之间,必有即又是整数,.再结合(1)式即有,即; 另一方面,当时,取,方程的两个根均大于0小于1,的最小值是 8.设()()()4321324f x a x x a x a =++-+-,对任意实数a . (1)证明:方程()0f x =总有相同实根; (2)证明:存在0x 恒有()00f x ≠. 【解析】【解法】显然,总有相同实根. 【解法2】考虑恒成立,即 故时,,即对任意实数,方程总有根. (2)【证明】由(1)知时,对任意实数,取得证. 9.已知方程4291240x x x -+-=的两个根是1和2,求这个方程的另两个根.()211101,01244αααα⎛⎫<<∴<-=--+⎪⎝⎭()101.4αα<-()1014ββ<-()()()()11111,16c a b c a a aαββαβαβ++>--=--=⋅()216,a c a b c >++()2f x ax bx c =++()0,a f x >∴()f x x ∴()()00,10,f f ⎧>⎪⎨>⎪⎩0,0.c a b c >⎧⎨++>⎩a b c 、、1,1c a b c ∴++216a >5a 5,1a c ==b 5-25510x x -+=αβ==a ∴ 5.()()43242432()(1)(32)4342f x a x x a x a x x a x x x=++-+-=--++-()()()()()()()()()22222412122121x x a x x x x x x a x x x =-+⋅++-=+-+++-()()()()222211x x x a x x ⎡⎤=+-++-⎣⎦()0f x =2x =-()()()()()432424321324342f x a x x a x a g a x x a x x x =++-+-==--++-(),0a f x ∈=R 42432340,20,x x x x x ⎧--=∴⎨+-=⎩2,0,1,2x x =±⎧⎨=-⎩2x =-()()0f x g a ==a ()0f x =2x =-2x =(),2160a f =≠02x =【解析】由已知可设.令,得,解方程,得.故原方程的另两个根是. 10.已知一元三次方程328120x x x --+=有两个相等的根,解这个方程. 【解析】设这个方程的三个根为, 则.联立①②消去,得 分解因式,得或或 代入①式,得或 将的值分别代人③,只有适合.故舍去. 原方程的三个根为.()()()4229124122x x x x x x mx -+-=--+-1x =-3m =2320x x +-=32x-32x -±=123,,x a x a x b ===()()32812()x x x x a x a x b --+=---()()32322281222.x x x x a b x a ab x a b --+=-+++-22212812a b a ab a b ⎧⎪⎨⎪+=+=-⎩=-, ①, ②, ③b 23280.a a --=()()2340,20a a a -+=∴-=1340,2a a +==24.3a =-13b =-211.3b =1122,a b a b 、、112,3a b ==-22411,33a b =-=∴1232,3x x a x ===-。
第18讲用二分法求方程的近似解1. 了解二分法的原理及其适用条件;2. 掌握二分法的实施步骤;3. 体会二分法中蕴含的逐步逼近思想和程序化思想.1二分法的概念对于在区间[a ,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.解释求f(x)=x2−x−2,g(x)=2x−1的零点很容易,因为我们会求其方程的解,而函数f(x)=x3+ x2−1或g(x)=e x+x−2的零点怎么求呢?我们求不出来会退而求其次,能否能知道零点的近似值呢?应该会想到函数零点存在性定理,没错这它就是二分法的理论基础.2用二分法求方程近似解的步骤(1)确定区间[a ,b],验证f(a)f(b)<0,给定精确度ε;(2)求区间(a ,b)的中点c;(3)计算f(c),(i) 若f(c)=0 , 则c就是函数的零点;(ii) 若f(a)f(c)<0,则令b=c(此时零点x0∈(a ,c))(iii)若f(c)f(b)<0,则令a=c(此时零点x0∈(c ,b))(4)判断是否达到精确度ε:即若|a−b|<ε,则得到零点近似值为a(或b);否则重复(2)~(4)Eg:求f(x)=x3+x2−1(x>0)的零点x0近似值(精确到0.1).解析易得f(x)=x3+x2−3在(0,+∞)上递增,则它至多只有一个零点,而f(0)=−3<0,f(2)=9>0,即f(x)=x3+x2−3在(0,2)存在唯一的零点x0;取区间(0,2)的中点1,而f(1)=−1<0,故零点x0在区间(1,2)上;>0,故零点x0在区间(1,1.5)上.取区间(1,2)的中点1.5,而f(1.5)=698而1.5已经达到了精确度0.1,故x0≈1.5.若精确度要求是0.01,则继续取区间(1,1.5)的中点1.25往下计算.解释(1)使用二分法的前提是函数在所选定的区间[a ,b]上的图象是连续不断的,且f(a)f(b)<0;(2)所选的区间[a ,b]的范围尽量小,且f(a),f(b)比较容易求;(3)利用二分法时,满足精确度便可停止计算.【题型一】判断二分法的适用条件【典题1】下列函数中,不能用二分法求零点的是()A.f(x)=2x B.f(x)=x2+2√2x+2−3D.f(x)=ln x+3C.f(x)=x+1x变式练习1.下列函数图象中,不能用二分法求零点的是()A.B.C.D.2.下列方程中,不能用二分法求近似解的为()A.log2x+x=0B.e x+x=0C.x2−2x+1=0D.√x+lnx=0【题型二】二分法的求解步骤【典题1】若函数f(x)=x3+x2−2x−2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=−2f(1.5)=0.625f(1.25)≈−0.984f(1.375)≈−0.260f(1.4375)≈0.162f(1.40625)≈−0.054那么方程x3+x2−2x−2=0的一个近似根(精确度为0.05)可以是( )A.1.25B.1.39C.1.41D.1.5变式练习=0近似解时,所取的第一个区间可以是()1. (2023·广东梅州·二模)用二分法求方程log4x−12xA.(0,1)B.(1,2)C.(2,3)D.(3,4)2.设f(x)=2x+x−8,用二分法求方程2x+x−8=0在[1,5]上的近似解时,经过两次二分法后,可确定近似解所在区间为()A.[1,2]或[2,3]都可以B.[2,3]C.[1,2]D.不能确定3.若函数y=f(x)的一个正零点用二分法计算,零点附近函数值的参考数据如下:f(1)=−2,f(1.25)=−0.984,f(1.375)=−0.260,f(1.40625)=−0.054,f(1.4375)=0.162,f(1.6)=0.625,那么方程f(x)= 0的一个近似根(精确度0.1)为()A.1.2B.1.3C.1.4D.1.54.已知函数f(x)在(10,12)内有一个零点,要使零点的近似值的精确度为0.001,若只从二等分区间的角度来考虑,则对区间(10,12)至少需要二等分()A.8次B.9次C.10次D.11次5. (多选)某同学利用二分法求函数f(x)=lnx+2x−6的零点时,用计算器算得部分函数值如表所示:f(2)≈−1.307f(2.5)≈−0.084f(2.5625)≈0.066f(2.625)≈0.215f(2.75)≈0.512f(3)≈1.099则函数f(x)=lnx+2x−6的零点的近似值(精确度0.1)可取为()A.2.49B.2.52C.2.55D.2.586.(多选)教材中用二分法求方程2x+3x−7=0的近似解时,设函数f(x)=2x+3x−7来研究,通过计算列出了它的对应值表x 1.25 1.375 1.40625 1.422 1.4375 1.5f(x)−0.87−0.26ℎ−0.050.020.33分析表中数据,则下列说法正确的是:()A.ℎ>0B.方程2x+3x−7=0有实数解C.若精确度到0.1,则近似解可取为1.375 D.若精确度为0.01,则近似解可取为1.4375【题型三】用二分法求函数零点近似值【典题1】用二分法求方程2−x=x+2在区间[−1,0]上的根的近似值(误差不超过0.01).变式练习1.设函数g(x)=−6x3−13x2−12x−3.则g(x)在区间(−1,0)内零点的近似解为.(精确到0.1)2.判断方程x3−x−1=0在区间[1,1.5]内是否有解;如果有,求出一个近似解.(精确度为0.1)3.求曲线y=lnx和直线x+y=2的交点的横坐标(误差不超过0.01).【题型四】二分法的思想应用【典题1】现有12个小球,从外观上看完全相同,除了1个小球质量不合标准外,其余的小球质量均相同.用一架天平,限称三次,把这个“坏球”找出来,并说明此球是偏轻还是偏重.如何称?变式练习1.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段地查找,困难很大.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子呢.想一想,维修线路的工人师傅怎样工作最合理?2.如图,有一块边长为30cm的正方形铁皮,将其四个角各截去一个边长为xcm的小正方形,然后折成一个无盖的盒子,如果要做成一个容积是1200cm3的无盖盒子,那么截去的小正方形的边长是多少厘米(精确到0.1cm)?请利用二分法思想,设计解决该问题的思路和过程.【A组---基础题】1.下列方程中不能用二分法求近似解的为()A.ln x+x=0B.e x−3x=0C.x3−3x+1=0D.4x2−4√5x+5=02.用二分法求方程lg x=3−x的近似解,可以取的一个区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)3.若函数f(x)=log3x+x−3的一个零点附近的函数值用二分法逐次计算的参考数据如下:f(2)=−0.3691f(2.5)=0.3340f(2.25)=−0.0119f(2.375)=0.1624f(2.3125)=0.0756f(2.28125)=0.0319那么方程log3x+x−3=0的一个近似根(精确度0.1)为()A.2.1B.2.2C.2.3D.2.44.(多选)在用“二分法”求函数f(x)零点的近似值时,若第一次所取区间为[−2,4],则第二次所取区间可能是()A.[−2,−1]B.[−2,1]C.[2,4]D.[1,4]5.已知方程lgx+x−2=0的根在区间(1,3)上,第一次用二分法求其近似解时,其根所在区间应取为.6.在用二分法求方程x2=3的正实数跟的近似解(精确度0.001)时,若我们选取初始区间是[1,7,1,8],为达到精确度要求至少需要计算的次数是.7.用二分法求方程2x3+3x−3=0的一个正实数近似解(精确度0.05)8.某企业现有资产4.2亿,计划平均每年增长8%,问要使资产达到10亿,需几年?(列出方程,利用二分法求解,结果取整数,可使用计算机)x3−x2+19.已知函数f(x)=13(1)证明方程f(x)=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f(x)=0(x∈[0,2])的实数解x0在哪个较小的区间内.【B组---提高题】1.若函数f(x)的零点与g(x)=512x3−125的零点之差的绝对值不超过0.25,则函数f(x)可以是()A.f(x)=4x−1B.f(x)=|2x−1|C.f(x)=x3+x−2D.f(x)=(3x+1)23的近似值(精确度为0.1,参考数据:1.3753≈2.5996,1.43753≈2.9705).2.求√3。
一、函数、极限、连续主要内容:极限的定义与性质,求极限(函数极限、数列极限),无穷小的比较,间断点及其类型.1.函数极限(洛必达法则、等价无穷小代换、泰勒公式)加减运算中等价原则:111111111111,,lim1,,,lim 1,αααββαβαββαααββαβαββ≠-≠-++ 则-则常用的等价代换:()(33332201111sin ,arcsin ,tan ,arctan ,sin arcsin (6633)1ln 1,ln ,1cos .22x x x x x x x x x x x x x x x x x x x x x x αα→--------+-时1,l n 1x x x →- 时 例1 求极限sin lim xx x x x I +→-= 1()6(改1000题数一1.32(17),数二1.65,数三1.43(22))例2 (类1000题数一1.58,数二1.108,数三1.75)()()()()()()2ln 1(),0(),01,0,0,0.1,02x xf x x x f x g x g f f f x +-⎧≠⎪⎪''''==⎨⎪=⎪⎩设具有二阶连续导若求数,()()()401,01,03f f f ⎛⎫'''==-=- ⎪⎝⎭例3设()22lim 1x x x bx e -→+∞⎤+=⎥⎦,试确定,a b 的值 ()2,1a b =-=例4 ()()()1tan sin 20,0lim ,0+x xx xx e x f x f t dtx x --∞→⎧≤=⎨>⎩⎰设,求极限 23e ⎛⎫⎪⎝⎭2.数列极限(夹逼准则、定积分定义、单调有界准则)例5 22212lim 111n n n n n →∞⎛⎫⎛⎫⎛⎫+++= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭12()e例6 求极限2sin sin sin lim 1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭ 2π⎛⎫ ⎪⎝⎭ (1000题数一1.55,数二1.105,数三1.72)例7 设()()()ln 2,,2f x x x x =+-∈-∞,()1求()f x 在(),2-∞上的最大值,()2若()11ln2,,1,2,n n x x f x n +=== ,求lim n n x →∞()()()111,2lim1n n f x →∞==最大值二、一元函数微分学主要内容:导数的定义,求各类函数的导数(复合函数、隐函数、参数方程、分段函数、高阶导数),性态(单调性、极值与最值、凹凸性与拐点),方程的根,不等式的证明,微分中值定理的证明题.例 设()()()limx af x f x x a x a x a→==-在处连续且存在,则在处()()()()()()()()()()()()()0,00.A f x f xB f x f xC f x f aD f x f x f a '='不可导,但可导不可导,且也不可导可导,且可导,但对不同的可以为也可以不为 1.方程的根例1 证明方程221x x =+有且仅有三个根例2 试求方程()20xe axa =>为常数的根的个数(1000题数二2.122,数三2.110)2.不等式的证明例3()()224201tan 2tanlim nn nn k x x x x x x →∞=≤-≤=∑证明:充分小时,不等式0设求例4 《18讲例题5.11》3.微分中值定理证明例5()[]()[]()()100,1010,12 2.=f x f f f x dx ξξ'∃∈=-⎰设在上有连续的导数,且,证明:使得例6 (1000题数一2.96,数二2.117,数三2.105)()[]()()()()()()222,2100 4.2,20.f x f x f f f f ξξξ'-≤+=⎡⎤⎣⎦''∃-+=设函数在上二阶可导,且,又试证:使得例7(18讲例题4.10的推广)()[]()()()()()()0,10,100,11,,00,1.f x f f m M m Mm M f f ξηξη==>∃∈+=+''设在上连续,在上可导,对任意的,证明:不同的,使得三、一元函数积分学主要内容:不定积分、定积分与反常积分(基本方法、特色方法、判敛),变限积分函数性质(连续性、可导性、奇偶性),定积分的应用,定积分等式与不等式的证明.1.不定积分、定积分、反常积分 例120xe dx ⎡⎤=⎣⎦⎰例2 22202cos sin xt x e dt xdx ππ--⎡⎤+=⎢⎥⎣⎦⎰⎰例3 3111arccos dx x x+∞⎰例4 ()()()20011dxx x αα+∞≥++⎰2.变限积分函数(略)3.定积分有关的等式、不等式的证明题例5()()[][]()()()()()()()()()20,,,0,1,sin 210.bba a f x g x ab a b g x a b f x g x dx f g x dx xdx xπξξ≥∈=>⎰⎰⎰设在上连续,又在区间上证明至少存在一点使利用的结论证明(18讲例8.2)例6.(1000题数一3.137,数二3.175,数三3.153)利用柯西积分不等式()()()()222b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰,证明:()()()2222bbaab a fx dx f x dx -'≤⎡⎤⎣⎦⎰⎰,其中()[](),0.f x a b f a =在上有一阶连续导数,例6’.()[]()()()()()()22,0,1,cos sin 1,.babbaaf x a b f x f x dx f x kxdx f x kxdxk ≥=+≤⎰⎰⎰若在上连续,且证明:这里是任意实数例7《18讲例题8.12》。
函数与方程教案函数与方程教案引言:数学是一门抽象而又实用的学科,而函数与方程则是数学中的两个重要概念。
函数与方程的学习对于培养学生的逻辑思维和问题解决能力非常重要。
在本篇文章中,我们将探讨如何设计一份高质量的函数与方程教案,以帮助学生更好地理解和应用这两个概念。
一、教学目标在设计教案之前,我们首先需要明确教学目标。
对于函数与方程的学习,我们可以设定以下几个目标:1. 理解函数与方程的基本概念和性质;2. 掌握函数与方程的表示方法和解题方法;3. 能够应用函数与方程解决实际问题;4. 培养学生的逻辑思维和问题解决能力。
二、教学内容接下来,我们需要确定教学内容。
函数与方程的内容非常广泛,可以从基础概念开始,逐步深入,包括但不限于以下几个方面:1. 函数的定义和性质:包括定义域、值域、图像、奇偶性等;2. 方程的基本概念:包括方程的定义、方程的解、方程的根等;3. 一次方程与一次函数:介绍一次方程与一次函数的关系,以及如何通过方程求解函数的根;4. 二次方程与二次函数:介绍二次方程与二次函数的关系,以及如何通过函数图像求解方程的根;5. 函数与方程的应用:介绍函数与方程在实际问题中的应用,如数学建模、物理问题等。
三、教学方法在教学过程中,我们可以采用多种教学方法,以激发学生的学习兴趣和提高他们的参与度。
以下是一些常用的教学方法:1. 探究式学习:通过引导学生观察、实验、总结,让他们主动发现函数与方程的规律和性质;2. 问题导向学习:通过提出具体问题,引导学生思考和解决问题,培养他们的问题解决能力;3. 合作学习:组织学生进行小组合作,通过互相讨论和合作解决问题,培养他们的团队合作精神;4. 案例分析:引入实际问题案例,让学生通过分析和解决案例,理解函数与方程的应用价值。
四、教学步骤在设计教案时,我们需要合理安排教学步骤,以确保教学的连贯性和有效性。
以下是一个可能的教学步骤:1. 引入:通过引入一个实际问题,激发学生的学习兴趣,并引导他们思考如何用函数与方程解决问题;2. 概念讲解:介绍函数与方程的基本概念和性质,让学生对它们有一个初步的了解;3. 示例演示:通过几个具体的例子,演示如何表示函数与方程,并解决相关问题;4. 练习巩固:组织学生进行一些练习,巩固他们对函数与方程的理解和掌握程度;5. 拓展应用:引入一些拓展应用题,让学生应用函数与方程解决更复杂的问题;6. 总结回顾:对本节课的内容进行总结回顾,并展望下节课的学习内容。
北师大版八年级上册数学第 18 讲《一次函数全章》知识点梳理【学习目标】1.了解常量、变量和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系.2.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.3.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识.4.通过讨论选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力.【知识网络】选择方案要点一、函数的相关概念一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y =kx +b ,其中k 、b 是常数,k ≠0.特别地,当b =0 时,一次函数y =kx +b 即y =kx (k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y =kx +b 可以看作由直线y =kx 平移| b |个单位长度而得到(当b >0 时,向上平移;当b <0 时,向下平移).说明通过平移,函数y =kx +b 与函数y =kx 的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y =kx +b 的图象和性质的影响:(1)k 决定直线y =kx +b 从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y轴交点的位置,k 、b 一起决定直线y =kx +b 经过的象限.(2) 两条直线l 1 : y = k 1 x + b 1 和l 2 : y = k 2 x + b 2 的位置关系可由其系数确定: k 1 ≠ k 2 ⇔ l 1 与l 2 相交;k 1 = k 2 ,且b 1 ≠ b 2 ⇔ l 1 与l 2 平行; k 1 = k 2 ,且b 1 = b 2 ⇔ l 1 与l 2 重合; (3) 直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线 x = a 、直线 y = b 不是一次函数的图象. 要点四、用函数的观点看方程、方程组、不等式【典型例题】 类型一、函数的概念1、下列说法正确的是:( )A.变量 x , y 满足2x + y = 3 ,则 y 是 x 的函数; B.变量 x , y 满足| y |= x ,则 y 是 x 的函数; C.变量 x , D.变量 x , 【答案】A ;y 满足 y 2 = x ,则 y 是 x 的函数; y 满足 y 2 - x 2 = 1,则 y 是 x 的函数. 【解析】B 、C 、D 三个选项,对于一个确定的 x 的值,都有两个 y 值和它对应,不满足单值对应的条2x - 3 x ⎩⎩ 件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )【答案】B ;2、求函数 的自变量的取值范围.【思路点拨】要使函数有意义,需 或 解这个不等式组即可.【答案与解析】 解:要使函数 有意义,则 x 要符合: 即:或2x -1 ≥ 0x -1解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的 x 的集合. 举一反三:【变式】求出下列函数中自变量 x 的取值范围(1) y = x +1 【答案】(2) y =x3x + 2|x -2| (3) y = +⎧x ≠ 0 解:(1)要使 y = x +1 有意义,需⎨x +1 ≠ 0 ,解得 x ≠0 且 x ≠-1;(2)要使 y = 3x + 2有意义,需⎧3x + 2 ≥ 0 ,解得 x ≥ - 2 且x ≠ 2 ;|x -2|⎨x - 2 ≠ 03 3 - 2x(3)要使y = +有意义,需⎧2x - 3 ≥ 0 ,解得x =3 .2x - 33 - 2x ⎨⎩3 - 2x ≥ 0 2类型二、一次函数的解析式3、已知y 与x - 2 成正比例关系,且其图象过点(3,3),试确定y 与x 的函数关系,并画出其图象.【思路点拨】y 与x - 2 成正比例关系,即y =k (x - 2) ,将点(3,3)代入求得函数关系式.【答案与解析】解:设y =k (x - 2) ,由于图象过点(3,3)知k = 3 ,故y = 3(x - 2) = 3x - 6 .其图象为过点(2,0)与(0,-6)的一条直线(如图所示).【总结升华】y 与x 成正比例满足关系式y =kx ,y 与x -2 成正比例满足关系式y =k (x - 2) ,注意区别.举一反三:【变式】直线y =kx +b 平行于直线y = 2x -1,且与x轴交于点(2,0),求这条直线的解析式. 【答案】解:∵直线y =kx +b 平行于直线y = 2x -1∴k = 2∵与x 轴交于点(2,0)∴①将k =2 代入①,得b =-4∴此直线解析式为y = 2x - 4 .类型三、一次函数的图象和性质4、已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是图中的().【答案】B;【解析】∵ y 随x 的增大而减小,∴k <0.∵y =x +k 中x 的系数为1>0,k <0,∴经过一、三、四象限,故选B.【总结升华】本题综合考查正比例函数和一次函数图象和性质,k >0 时,函数值随自变量x 的增大而增大.举一反三:【变式】已知正比例函数y =(2m -1)x 的图象上两点A( x1,y1), B( x2, y2),当x1<x2时, 有y 1 >y2, 那么m 的取值范围是( )A.m <1B.m >1C.m < 2D.m > 0 2 2【答案】A;提示:由题意y 随着x 的增大而减小,所以2m -1 < 0 ,选A 答案.类型四、一次函数与方程(组)、不等式5、如图,平面直角坐标系中画出了函数y =kx +b 的图象.(1)根据图象,求k 和b 的值.(2)在图中画出函数y =-2x + 2 的图象.(3)求x 的取值范围,使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值.【思路点拨】(3)画出函数图象后比较,要使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值,需y =kx +b 的图象在y =-2x + 2 图象的上方.【答案与解析】解:(1)∵直线y =kx +b 经过点(-2,0),(0,2).∴解得∴y =x + 2 .(2)y=-2x+2经过(0,2),(1,0),图象如图所示.(3)当y =kx +b 的函数值大于y =-2x + 2 的函数值时,也就是x + 2 >-2x + 2 ,解得x >0,即x 的取值范围为x >0.【总结升华】函数图象在上方函数值比函数图象在下方函数值大.举一反三:【变式】(2015•武汉校级模拟)已知一次函数y=kx+b 的图象经过点(3,5)与(﹣4,﹣9).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx+b≤5 的解集.【答案】解:∵一次函数y=kx+b 的图象经过点点(3,5)与(﹣4,﹣9),∴,解得∴函数解析式为:y=2x﹣1;(2)∵k=2>0,∴y 随x 的增大而增大,把y=5 代入y=2x﹣1 解得,x=3,∴当x≤3 时,函数y≤5,故不等式kx+b≤5 的解集为x≤3.类型五、一次函数的应用6、(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12 吨(含12 吨)时,每吨按政府补贴优惠价收费;每月超过12 吨,超过部分每吨按市场调节价收费,小黄家1 月份用水24 吨,交水费42 元.2 月份用水20 吨,交水费32 元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3 月份用水26 吨,他家应交水费多少元?【答案与解析】解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1 元,市场调节价为2.5 元.(2)∵当0≤x≤12 时,y=x;当x>12 时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y= .(3)∵x=26>12,∴把 x=26 代入 y=2.5x ﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费 47 元.【总结升华】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围. 举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份 0.7 元,销售价是每份 1 元,卖不掉的报纸还可以以 0.20 元的价格返回报社,在一个月内(以 30 天计算),有 20 天每天可卖出 100 份,其余 10 天,每天可卖出 60 份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为 ,每月所获得的利润为 .(1) 写出 与 之间的函数关系式,并指出自变量 的取值范围;(2) 报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1).类型六、一次函数综合7、如图所示,直线l 1 的解析表达式为 y = -3x + 3 ,且l 1 与 x 轴交于点 D ,直线l 2 经过 A 、B 两点, 直线l 1 、l 2 交于点 C .(1) 求点 D 的坐标; (2) 求直线l 2 的解析表达式; (3) 求△ADC 的面积;(4) 在直线l 2 上存在异于点 C 的另一点 P ,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标.⎨ ⎪ ⎨ ⎨ y = -3.【答案与解析】解: (1)由 y = -3x + 3 ,当 y =0,得-3x + 3 =0,得 x =l .∴ D(1,0).(2) 设直线l 2 的解析表达式为 y = kx + b ,由图象知, x = 4 , y = 0 ; x = 3 , y = - 3.2⎧4k + b = 0, 将这两组值代入,得方程组⎪33k + b = - . ⎩ 2⎧k = 3 ,解得⎪2⎪⎩b = -6. ∴ 直线l 2 的解析表达式为 y = 3x - 6 .2⎧y = -3x + 3, (3) ∵ 点 C 是直线l 与l 的交点,于是有⎪312⎨ y = ⎩ x - 6. 2解得⎧x = 2,⎩ ∴ C(2,-3). ∴ △ADC 的 AD 边上的高为 3. ∵ OD =1,OA =4, ∴ AD =3. ∴ S= 1 ⨯ 3⨯ | -3 |= 9. △ADC2 2(4)P(6,3).【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.。
函数与方程教案一、引言函数与方程是高中数学中的重要内容,它们是解决数学问题的基本工具。
在教学中,如何生动有效地向学生介绍函数与方程的概念,引导学生理解和掌握相关的知识和技能,是每位教师都需要思考和解决的问题。
本教案旨在通过设计合理的教学活动,帮助学生全面理解函数与方程的概念,提高他们解决实际问题的能力。
二、教学目标1. 知识目标- 掌握函数与方程的基本概念和相关术语。
- 了解函数与方程在数学和实际生活中的应用。
- 理解函数与方程之间的关系。
2. 能力目标- 能够识别并解释函数与方程的特征。
- 能够应用函数与方程解决实际问题。
- 能够运用函数与方程的知识进行分析和推理。
三、教学重点和难点1. 教学重点- 函数与方程的概念和特征。
- 函数与方程的应用。
2. 教学难点- 帮助学生理解函数与方程之间的关系。
- 引导学生解决实际问题时能够正确运用函数与方程的知识。
四、教学准备1. 教师准备- 准备教学课件和教具。
- 复习函数与方程的相关知识。
2. 学生准备- 准备教学所需的教材和笔记。
- 复习与函数与方程相关的知识。
五、教学过程本教案将采用探究式教学的方法,让学生通过实际操作和思考,主动发现函数与方程的规律和应用。
具体教学过程如下:1. 概念引入- 利用实例引导学生思考:什么是函数?什么是方程?它们有什么区别和联系?- 定义函数与方程的概念,并让学生进行归纳整理。
2. 特征分析- 设计一组数据,让学生观察并分析其中的规律。
- 引导学生发现函数和方程的特征,如自变量、因变量、线性函数、非线性函数等。
3. 应用探究- 提供一些实际问题,让学生运用函数与方程的知识解决。
- 引导学生分析问题的关键词,确定函数与方程的表达式,并进行计算。
4. 总结归纳- 引导学生总结函数与方程的定义、特征和应用。
- 提供一些练习题,巩固学生对函数与方程的理解。
六、教学评价1. 自我评价- 教师观察学生的参与程度和思维能力。
- 教师记录学生在课堂上的表现和反馈,并做好评价记录。
备战高考数学复习考点知识与题型讲解第18讲函数模型的应用考向预测核心素养考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,各种题型均有可能,中档难度.数学建模一、知识梳理1.六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b logax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+ax(a为常数,a>0)2.三种函数模型性质比较y=a x(a>1)y=logax(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.“对勾”函数f (x )=x +a x(a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .二、教材衍化1.(人A 必修第一册P 152例6改编)某校拟用一种喷雾剂对宿舍进行消毒,需对喷雾完毕后空气中每立方米药物残留量y (单位:毫克)与时间x (单位:时)的关系进行研究,为此收集部分数据并做了初步处理,得到如图散点图.现拟从下列四个函数模型中选择一个估计y 与x 的关系,则应选用的函数模型是( )A .y =ax +bB.y =a ·⎝ ⎛⎭⎪⎫14x+b (a >0)C .y =x a +b (a >0) D.y =ax +b x(a >0,b >0)解析:选 B.由散点图可知,函数在(0,+∞)上单调递减,且散点分布在一条曲线附近,函数y =a ·⎝ ⎛⎭⎪⎫14x+b 的图象为一条曲线,且当a >0时,该函数单调递减,符合题意,故选B.2.(多选)(人A 必修第一册P 155习题4.5T 9改编)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法中正确的是( )A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3 m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 解析:选ABD.把(1,2)代入y =a t ,可得函数解析式为y =2t , 因为2t +1-2t2t =1,所以每月增长率为1,A 对;当t =5时,y =32>30,所以B 对;第2个月增加2 m 2,第3个月增加4 m 2,C 错; 由2t 1=2,2t 2=3,2t 3=6,所以2t 1·2t 2=2t 3,故t 1+t 2=t 3,D 对.3.(人A 必修第一册P 96习题3.4T 5改编)下表是弹簧伸长长度x (单位:cm)与拉力F (单位:N)的相关数据:x 14.2 28.8 41.3 57.5 70.2 F12345写出能反映这一变化现象的函数为________.(不唯一)解析:根据点的分布特征,可以考虑用函数x =kF +b (k ≠0)作为刻画弹簧伸长长度与拉力关系的函数模型.取两组数据(1,14.2),(4,57.5),则⎩⎨⎧k +b =14.2,4k +b =57.5,解得⎩⎨⎧k ≈14.4,b ≈-0.2,所以x =14.4F -0.2.将已知数据代入上述解析式,或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好.答案:x =14.4F -0.2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )(2)函数y =2x的函数值比y =x 2的函数值大.( ) (3)不存在x 0,使ax 0<x n 0<log a x 0.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(函数模型选择易误)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100x B.y =50x 2-50x +100 C .y =50×2xD.y =100log 2x +100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证可知选C.2.(指数函数、对数函数性质不明致误)下面对函数f (x )=log 12x 与g (x )=⎝ ⎛⎭⎪⎫12x 在区间(0,+∞)上的衰减情况的说法中正确的为( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快解析:选C.在同一平面直角坐标系中画出f(x)与g(x)的图象如图所示,由图象可判断出衰减情况为:f(x)衰减速度越来越慢;g(x)衰减速度越来越慢,故选C.3.(平均增长率概念不清致误)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.解析:设年平均增长率为x,则(1+x)2=(1+p)(1+q),所以x=(1+p)(1+q)-1.答案:(1+p)(1+q)-1考点一用函数图象刻画变化过程(自主练透)复习指导:能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.1.一种叫万年松的树的生长时间t(年)与树高y(m)之间的散点图如图所示.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( ) A.y=2t B.y=log2tC.y=t3D.y=2t2解析:选B.由图知,函数的增长速度越来越慢,排除A,C,D.选B.2.(2022·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.3.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(多选)(2022·福建厦门高三质检)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(单位:微克)与时间t(单位:小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.a=3B.注射一次治疗该病的有效时间长度为6小时C.注射该药物18小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为53132小时解析:选AD.当t =1时,y =4,即⎝ ⎛⎭⎪⎫121-a=4,解得a =3,所以y =⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132, 药物刚好失效的时间⎝ ⎛⎭⎪⎫12t -3=0.125,解得t =6,故药物有效时长为6-132=53132小时, 药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5微克,故C 错误.判断函数图象与实际问题变化过程相吻合的方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知或选择函数模型解决实际问题(综合研析)复习指导:1.已知函数模型,用待定系数法确定解析式; 2.根据几种常见函数的增长差异选择函数模型.(1)(2022·江西高三月考)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知在一定时间内,某种水果失去的新鲜度y 与其采摘后时间t (小时)近似满足的函数关系式为y =k ·m t (k ,m 为非零常数),若采摘后20小时,这种水果失去的新鲜度为20%,采摘后30小时,这种水果失去的新鲜度为40%.那么采摘下来的这种水果大约经过多长时间后失去50%新鲜度(参考数据:lg 2≈0.3,结果取整数)( )A .33小时 B.23小时 C .35小时D.36小时(2)某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60100 180 种植成本Q 11684116根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,则①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 【解析】 (1)由题意⎩⎨⎧k ·m 20=20%k ·m 30=40%,两式相除得m 10=2,m =2110,代入得k =5%,所以y =5%·2t10,由50%=5%·2t 10得2t10=10,取对数得t 10lg 2=1,t =10lg 2≈100.3≈33(小时). (2)由题意知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.【答案】 (1)A (2)①120 ②80已知或选择函数模型解决实际问题的注意点(1)已知模型的实际问题,根据待定系数法确定模型,再利用模型求解实际问题.(2)选择模型的问题可结合函数图象,函数值的增长特点(增减、增长快慢)等选用合适的函数模型.|跟踪训练|(多选)纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2018年到2021年产生的包装垃圾量如下表:有下列函数模型:①y =a ·b x -2 018;②y =a sin πx2 018+b (参考数据:lg 2=0.301 0,lg 3=0.477 1),则( )A .选择模型①,函数模型解析式y =4·⎝ ⎛⎭⎪⎫32x -2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系B .选择模型②,函数模型解析式y =4sin πx2 018+2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系C .若不加以控制,任由包装垃圾如此增长下去,从2023年开始,该城市的包装垃圾将超过40万吨D .若不加以控制,任由包装垃圾如此增长下去,从2024年开始,该城市的包装垃圾将超过40万吨解析:选AD.若选y =4·⎝ ⎛⎭⎪⎫32x -2 018,计算可得对应数据近似为4,6,9,13.5,若选y =4sin πx2 018+2 018,计算可得对应数据近似值都大于2 014,显然A 正确,B 错误;按照选择函数模型y =4·⎝ ⎛⎭⎪⎫32x -2 018,令y >40,即4×⎝ ⎛⎭⎪⎫32x -2 018>40,所以⎝ ⎛⎭⎪⎫32x -2 018>10,所以x -2 018>log 3210,所以x -2 018>lg 10lg 32=1lg 3-lg 2≈5.678 6,所以x >2 023.678 6,即从2024年开始,该城市的包装垃圾将超过40万吨,故C 错误,D 正确.考点三 构建函数模型解决实际问题(多维探究)复习指导:1.分析题意,寻找实际问题中起决定作用的两个变量. 2.确定两个变量间的关系,选择合适的函数模型. 角度1 构建二次函数、分段函数、“对勾”函数模型(链接常用结论2)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值,为9万元. 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值,为15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.角度2 构建指数函数、对数函数模型(1)(2022·长春高三摸底考试)2018年5月至2019年春,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,呈现几何式的爆发,仅仅几个月,蝗虫数量增长了8 000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦,假设蝗虫的日增长率为5%,最初有N 0只,则达到最初的16 000倍只需经过(参考数据:ln 1.05≈0.048 8,ln 16 000≈9.680 3)( )A .191天 B.195天 C.199天D.203天(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设过x天能达到最初的16 000倍,由已知可得,N0(1+0.05)x=16 000N0,所以x=ln 16 000ln 1.05≈198.4,又x∈N,故经过199天能达到最初的16 000倍.(2)M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg A1A,则A1A=109,5=lg A2-lg A0=lgA2A,则A2A=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】(1)C (2)6 10 000(1)建模解决实际问题的三个步骤①建模:抽象出实际问题的数学模型.②推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.③评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.(2)构建函数模型解决实际问题,充分体现了数学建模的核心素养.[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.|跟踪训练|1.(多选)某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5 000册.要使该杂志销售收入不少于22.4万元,每册杂志可以定价为( )A .2.5元 B.3元 C.3.2元D.3.5元解析:选BC.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x (x >2)元,则发行量为⎝ ⎛⎭⎪⎫10-x -20.2×0.5万册, 则该杂志销售收入为⎝ ⎛⎭⎪⎫10-x -20.2×0.5x 万元, 所以⎝ ⎛⎭⎪⎫10-x -20.2×0.5x ≥22.4,化简得x 2-6x +8.96≤0,解得2.8≤x ≤3.2,故选BC.2.某种茶水用100 ℃的水泡制,再等到60 ℃时饮用可产生最佳口感.已知茶水温度y (单位:℃)与经过时间t (单位:min)的函数关系是:y =ka t +y 0,其中a 为衰减比例,y 0是室温,t =0时,y 为茶水初始温度,若室温为20 ℃,a =⎝ ⎛⎭⎪⎫1218,茶水初始温度为100 ℃,则k =________,产生最佳口感所需时间是________min.解析:由题意,y =ka t +20,当t =0时,有y =ka t +20=k +20=100,k =80, 则y =80a t +20,当y =60时,即80a t +20=60,所以80a t =40,所以a t =12,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1218t =12,所以t =8.答案:80 8[A 基础达标]1.某种细菌在培养过程中,每15 min 分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过的时间是( )A .12 h B.4 h C.3 hD.2 h解析:选C.设这种细菌由1个分裂成4 096个需经过x次分裂,则4 096=2x,解得x=12,故所需时间t=12×1560=3 h.2.“龟兔赛跑”讲述了这样的故事:兔子和乌龟赛跑,领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )解析:选B.选项A表示龟兔同时到达;选项C表示兔子没有追赶乌龟;选项D表示兔子先到达终点.3.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )A.60安 B.240安C.75安D.135安解析:选D.由已知,设比例常数为k,则I=k·r3.由题意,当r=4时,I=320,故有320=k×43,解得k=32064=5,所以I=5r3.故当r=3时,I=5×33=135(安).故选D.5.(2022·皖南八校联考)某购物网站在2021年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:36.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析:当t=0时,y=a;当t=8时,y=a e-8b=12a,故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.答案:168.某工厂因排污比较严重,决定着手整治,第一个月污染度为60,整治后前四个月的污染度如下表:污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f (x )=20|x -4|(x ≥1),g (x )=203(x -4)2(x ≥1),h (x )=30|log 2x -2|(x ≥1),其中x 表示月数,f (x ),g (x ),h (x )分别表示污染度.(1)试问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60? 解:(1)用h (x )模拟比较合理,理由如下: 因为f (2)=40,g (2)≈26.7,h (2)=30;f (3)=20,g (3)≈6.7,h (3)≈12.5.由此可得h (x )更接近实际值,所以用h (x )模拟比较合理.(2)因为h (x )=30|log 2x -2|在x ≥4时是增函数,h (16)=60,所以整治后有16个月的污染度不超过60.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元,0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资额的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元, 则投资债券类产品为(20-x )万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以当x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.[B 综合应用]10.在标准温度和大气压下,人体血液中氢离子物质的量的浓度(单位:mol/L ,记作[H +])和氢氧根离子物质的量的浓度(单位:mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12B.13C.16D.110解析:选C.因为[H +]·[OH -]=10-14,所以[H +][OH -]=[H +]2×1014,因为7.35<-lg[H+]<7.45,所以10-7.45<[H +]<10-7.35,所以10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg 100.7=0.7>lg 3>lg 2,所以100.7>3>2,10-0.7<13<12,所以110<[H +][OH -]<13.故选C.11.(2022·焦作温县一中10月月考)搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭,在酒泉卫星发射中心点火发射成功.此次航天飞行任务中,火箭起到了非常重要的作用.在不考虑空气动力和地球引力的理想情况下,火箭在发动机工作期间获得速度增量v (单位:千米/秒)可以用齐奥尔科夫斯基公式v =ωln ⎝ ⎛⎭⎪⎫1+m M 来表示,其中,ω(单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身(除燃料外)的质量.若某型号的火箭发动机的喷射速度为5千米/秒,要使得该火箭获得的最大速度v 达到第一宇宙速度(7.9千米/秒),则火箭的燃料质量m 与火箭自身质量M 之比mM约为( )A .e 1.58 B.e 0.58 C .e 1.58-1D.e 0.58-1解析:选C.由题设,5ln ⎝ ⎛⎭⎪⎫1+m M =7.9,则m M =e 7.95-1=e 1.58-1.12.(多选)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎨⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A .随着时间的增加,小菲的单词记忆保持量降低B .第一天小菲的单词记忆保持量下降最多C .9天后,小菲的单词记忆保持量低于40%D .26天后,小菲的单词记忆保持量不足20%解析:选ABC.由函数解析式可知f (x )随着x 的增加而减少,故A 正确;由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁的燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)燕子静止时的耗氧量是________个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是________.解析:(1)由题意知,当燕子静止时,它的速度为0,代入v =5log 2Q 10中可得0=5log 2Q10,解得Q =10.(2)将耗氧量Q =80代入v =5log 2Q 10中,得v =5log 28010=5log 28=15 (m/s). 答案:(1)10 (2)15 m/s14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +(b -a )x .这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.解析:由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),因为b -c =(b -a )-(c -a ),所以(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.因为0<x <1,所以x =5-12. 答案:5-12[C 素养提升]15.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t (x )=⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃的保鲜时间是16小时. (1)该食品在8 ℃的保鲜时间是________小时;(2)已知甲在某日上午10时购买了该食品,并将其遗放在室外,且当日的室外温度随时间变化如图所示,那么到了当日13时,甲所购买的食品________保鲜时间.(填“过了”或“没过”)解析:(1)因为食品在4 ℃的保鲜时间是16小时,所以24k +6=16,解得k =-12.所以t (8)=2-4+6=4.(2)由图象可知在11时之前,温度已经超过了10 ℃,此时该食品的保鲜期少于21=2小时.而食品在11时之前已放了一段时间,所以到13时,该食品已过保鲜期.答案:(1)4 (2)过了16.(2022·上海高三月考)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数f (x )与第x 天近似地满足f (x )=8+8x(千人),且参观民俗文化村的游客人均消费g (x )近似地满足g (x )=143-|x -22|(元).(1)求该村的第x 天的旅游收入p (x )(单位:千元,1≤x ≤30,x ∈N *);(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计算)解:(1)依据题意,有p (x )=f (x )·g (x )=⎝ ⎛⎭⎪⎫8+8x ·(143-|x -22|)(1≤x ≤30,x∈N *)=⎩⎪⎨⎪⎧8x +968x +976(1≤x ≤22,x ∈N *),-8x +1 320x +1 312(22<x ≤30,x ∈N *).(2)①当1≤x ≤22,x ∈N *时,p (x )=8x +968x+976≥28x ·968x+976=1 152(当且仅当x =11时,等号成立),因此,p (x )min =p (11)=1 152(千元).②当22<x≤30,x∈N*时,p(x)=-8x+1 320x+1 312.求导可得p′(x)=-8-1 320x2<0,所以p(x)=-8x+错误!+1 312在(22,30]上单调递减,于是p(x)min=p(30)=1 116(千元).又1 152>1 116,所以日最低收入为1 116千元.该村两年可收回的投资资金为 1 116×20%×5%×365×2=8 146.8(千元)=814.68(万元),因为814.68万元>800万元,所以,该村在两年内能收回全部投资成本.21 / 21。
函数与方程教案教案:函数与方程一、教学内容:1. 函数概念及性质;2. 方程概念及求解方法;3. 函数与方程的关系。
二、教学目标:1. 了解函数的定义及性质;2. 掌握方程的概念及求解方法;3. 理解函数与方程的关系,能够在实际问题中应用函数和方程进行求解。
三、教学过程:1. 导入:通过提问引导学生回顾线性方程的概念及求解方法。
2. 讲解函数的概念及性质:(1)引导学生思考函数的含义。
函数是一种特殊的关系,它将每一个自变量与唯一的一个因变量对应起来。
例如,y = 2x + 3就是一个函数关系,其中x是自变量,y是因变量。
(2)介绍函数的性质:a. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
b. 单调性:函数的单调性是指函数曲线的上升与下降方向。
可以分为增函数和减函数。
c. 奇偶性:函数的奇偶性是指函数关系在对称中的表现。
奇函数的函数图象关于原点对称,即f(-x) = -f(x),偶函数的函数图象关于y轴对称,即f(-x) = f(x)。
d. 图象和方程:函数的图象是函数关系在坐标系中的表示,函数的方程是表示函数关系的代数式。
3. 讲解方程的概念及求解方法:(1)引导学生思考方程的含义。
方程是一个等式,含有一个或多个未知数,通过求解可以得到未知数的值。
(2)介绍方程的求解方法:a. 方程的转化:可以通过变形、移项等方法将方程转化为更简单的形式。
b. 方程的解法:可以通过列方程、联立方程等方法求解方程。
4. 讲解函数与方程的关系:(1)引导学生思考函数与方程的关系。
函数是一个特殊的方程,它是自变量与因变量之间的关系。
(2)举例说明函数与方程的关系。
例如,y = 2x + 3就是一个函数关系,也可以写成2x + y - 3 = 0的方程。
5. 练习与巩固:(1)通过练习题,让学生巩固函数与方程的概念及性质。
(2)设计实际问题,让学生应用函数和方程进行求解。
四、教学反思:通过本节课的教学,学生对函数和方程的概念有了更深入的理解。
高中数学一年级教案:函数与方程函数与方程一、引言数学是一门重要的学科,它在不同阶段有着不同的内容和要求。
高中数学作为数学学科的一个重要阶段,在培养学生数学思维能力和解决实际问题的能力方面起着关键性的作用。
本教案将重点介绍高中数学一年级关于函数与方程的教学内容及方法。
二、函数1. 函数定义与表达式(1)函数概念:函数是一个对应关系,将自变量映射到唯一的因变量上。
(2)函数符号:y = f(x),其中x为自变量,y为因变量。
(3)解析式表示:常见的解析式表示有多项式、指数、对数等形式。
2. 函数图象(1)坐标系:建立笛卡尔坐标系来描述函数图象。
(2)坐标系原点到曲线距离:垂直距离称为纵坐标或函数值,水平距离称为横坐标或自变量。
(3)基本图象:线性函数、二次函数等基本图象。
三、方程1. 方程定义与类型(1)方程概念:含有未知数的等式称为方程,通过求解来确定未知数的值。
(2)一元方程:只含有一个未知数的方程。
(3)二元方程:含有两个未知数的方程。
2. 解方程的方法(1)常系数一次方程求解:通过分步骤将常系数一次方程转化并用逆运算求解。
(2)二次方程求解:通过配方法、公式法或图象法来求解二次方程。
(3)绝对值方程求解:根据绝对值的性质,将绝对值移项并分类讨论。
(4)分式方程求解:通过等价变形和通分来将分式方程转换为整式的形式进行求解。
四、教学实施1. 教学目标本课教育主要培养学生的函数与方程的基本概念,建立起正确的思想方式,掌握分析和应用函数与解决相关问题的能力,同时提升学生在推理判断、问题解决中使用数学知识与技巧的能力。
具体目标包括:- 了解函数定义与表达方式;- 理解函数图象及其特点;- 理解方程概念及不同类型;- 掌握一些简单函数和一元常系数一次方程组、二次三种类型;各种类型教材所作相关题完全胜任。
2. 教学方法(1)启发式教学法:通过提出问题、引导学生发现规律并进行讨论分析,激发学生的兴趣与思考能力。
函数与方程教案教案标题:探索函数与方程教案目标:1. 让学生了解函数和方程的基本概念和特征。
2. 培养学生分析、解决问题的能力。
3. 帮助学生建立函数和方程之间的联系,提高数学思维和推理能力。
教案内容:1. 引入函数和方程的概念:a. 向学生介绍函数和方程的定义,并与实际生活中的例子进行关联。
b. 解释函数和方程的区别,强调函数作为一种映射关系,而方程则是等式的表示。
2. 探索函数:a. 帮助学生理解函数的符号表示法,包括函数名、自变量和因变量。
b. 引导学生使用输入输出表和图形表示来描述函数的关系。
c. 鼓励学生研究不同类型的函数,如线性函数、二次函数等。
3. 解决方程:a. 介绍方程的概念,并鼓励学生发现方程在解决问题中的应用。
b. 帮助学生理解解方程的含义,并教授基本的解方程方法,如逆运算、等式性质等。
c. 提供一系列实际问题和数学问题,要求学生使用方程来解决。
4. 函数与方程的联系:a. 引导学生思考函数与方程之间的联系,如函数图像与方程的关系。
b. 帮助学生通过观察函数图像来推导函数的方程表示。
c. 鼓励学生探索函数和方程在解决实际问题中的应用。
教案实施:1. 知识导入:通过一个生活中实际的例子引入函数和方程的概念。
2. 知识呈现:使用图表、图形和实例来展示函数和方程的特征和应用。
3. 学生练习:将学生分成小组,让他们完成一些关于函数和方程的练习和问题。
4. 教师辅助:引导学生思考和讨论,澄清概念,解答疑问。
5. 巩固与拓展:通过解决更复杂的问题和探索更多的函数类型来巩固和拓展学生的知识。
6. 总结与评价:让学生总结所学的函数和方程的知识,评价他们在解决问题中的应用能力。
7. 课后作业:布置一些相关的作业和习题,巩固学生的知识和技能。
教案评估:1. 教师观察:观察学生在课堂上的参与度和理解程度。
2. 练习与作业:评估学生在练习和作业中的表现。
3. 小组讨论:观察学生在小组中的合作和讨论,评估他们对函数和方程的掌握程度。
第18讲一次函数的表达式(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--明士教育集团个性化教学辅导导学案教学课题一次函数的表达式课时计划第(18)次课授课教师学科数学授课日期和时段上课学生年级准初二上课形式阶段基础()提高(√)强化()教学目标1.掌握一次函数的表达式的确定方法。
2.一次函数图像的性质。
重点、难点学习重点:待定系数法求一次函数的关系式。
学习难点:数形结合探索待定系数法。
一、学习与应用用待定系数法确定正比例函数的表达式(重点)1.正比例函数的表达式为y=k x(k≠0),只有一个待定系数,所以只要知道自变量与函数的一对对应值或图像上一个点的坐标(原点除外)即可求出k的值,从而确定表达式。
2.先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法。
3.用待定系数法确定正比例函数表达式的一般步骤是:①设:设出函数的表达式,如y=k x(k≠0);②代:把已知条件代入y=k x中;③求:解方程求未知数k;④写:写出正比例函数的表达式。
“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的Ⅰ、知识梳理认真阅读、理解教材,带着自己预习的疑惑认真听课学习,复习与本次课程相关的重点知识与公式及规律,认真听老师讲解本次课程基本知识要点。
课堂笔记或者其它补充填在右用待定系数法确定一次函数表达式(难点)一次函数表达式为y=k x+b(k≠0),含有两个待定系数k和b,根据已知条件列出方程组,求出未知的系数k、b,从而确定表达式,这就是待定系数法在确定一次函数表达式中的应用。
类型一:正比例函数的确定例1 某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图1所示。
(1)写出v与t之间的关系式。
(2)下滑3秒时物体的速度是多少【对应练习】已知正比例函数的图像经过点A(-2,-3),求正比例函数的表达式。
第18讲 函数与方程
一、要点精讲
1.方程的根与函数的零点
(1)函数零点:概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:
1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。
2.二分法
二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下:
(1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε;(2)求区间a (,)b 的中点1x ;(3)计算)(1x f :
①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈);
(4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。
注:函数零点的性质
从“数”的角度看:即是使0)(=x f 的实数;
从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;
若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点;
若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点。
注:用二分法求函数的变号零点:二分法的条件)(a f ·)(b f 0<表明用二分法求函数的近似零点都是指变号零点。
3.二次函数的基本性质
(1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n 。
(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=
2
1 (p +q )。
若-a b 2<p ,则f (p )=m ,f (q )=M ;若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-a b 2)=m ;若-a
b 2≥q ,则f (p )=M ,f (q )=m 。
(3)二次方程f (x )=ax 2+bx +
c =0的实根分布及条件。
①方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;
②二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a b ac b
③二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;
0)(,0)(,2,042p f a q f a q a b p ac b ④二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立。
二、典例解析
题型1:方程的根与函数零点
例1.(1)方程lg x +x =3的解所在区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
(2)设a 为常数,试讨论方程)lg()3lg()1lg(x a x x -=-+-的实根的个数。
题型2:零点存在性定理
例2.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )
A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;
B .若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c f ;
C .若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;
D .若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f ;
题型3:二分法的概念
例3.关于“二分法”求方程的近似解,说法正确的是()
A .“二分法”求方程的近似解一定可将)(x f y =在[a ,b ]内的所有零点得到;
B .“二分法”求方程的近似解有可能得不到)(x f y =在[a ,b ]内的零点;
C .应用“二分法”求方程的近似解,)(x f y =在[a ,b ]内有可能无零点;
D .“二分法”求方程的近似解可能得到0)(=x f 在[a ,b ]内的精确解;
例4.方程0)(=x f 在[0,1]内的近似解,用“二分法”计算到445.010=x 达到精确度要求。
那么所取误差限ξ是( )A .0.05 B .0.005 C .0.0005 D .0.00005
题型4:一元二次方程的根与一元二次函数的零点
例5. 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足1210x x a
<<<
. 当()x x ∈01,时,证明()x f x x <<1。
例6.已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .
(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;
(2)如果21<x ,212=-x x ,求b 的取值范围.
题型5:一元二次函数与一元二次不等式
例7.设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤
54。
例8.已知二次函数f x ax bx c ()=++2,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ()
题型6:二次函数的图像与性质
例9.在下列图象中,二次函数y =ax 2+bx 与指数函数y =(a
b )x 的图象只可能是( )
例10.设a ∈R ,函数f (x )=x 2+|x -a |+1,x ∈R. (1)讨论f (x )的奇偶性;(2)求f (x )的最小值.
题型7:二次函数的综合问题
例11.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+。
(Ⅰ)求函数()g x 的解析式; (Ⅱ)解不等式()()1g x f x x ≥--;
(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围。
例12.已知函数()22x x
a f x =-。
(1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;
(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;
(3)设)()(1)(x h x f a x F +=,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。