《数理方程》第五讲.ppt
- 格式:ppt
- 大小:1.19 MB
- 文档页数:12
第五章 Bessel 函数5.2 基础训练5.2.1例题分析例1 试用平面极坐标系把二维波动方程分离变量:2()0tt xx yy u a u u -+=(1)解 先把时间变量t 分离出来,令)(),(),,(t T U t u ϕρϕρ=,代入方程(1)22(,)''()(,)()0U T t a U T t ρϕρϕ-∇=两边同乘以21a UT并移项得 22''T Ua T U∇=上式左边仅是t 的函数;右边是ρ,t 的函数。
若要使等式成立,两边应为同一个常数,记为2k -,则有22''0T a k T +=(2)220U k U ∇+=(3)(3)式为二维亥姆霍兹方程,它在平面极坐标系下的表达式为:22110U U U k U ρρρϕϕρρ+++=进一步分离变量,令(,)()()U R ρϕρϕ=Φ,代入上式得2211'''''0R R R k R ρρΦ+Φ+Φ+Φ=两边同乘以2R ρΦ,并整理得222'''''R R k RRρρρΦ=+=-Φ同上讨论,等式两边应为同一常数,记为2m ,则有2''0m Φ+Φ=(4)2222'''()0R R k m R ρρρ++-=(5)对(5)式作代数变换x k ρ=后变为贝塞尔方程222'''()0x R xR x m R ++-=(6)其通解是()()()m m R AJ k BY k ρρρ=+ 其中,,m m A B J Y 为任意常数和为第一类和第二类Bessel 函数。
由周期条件,方程(4)的解为()c o s s i n 0,1,2m m m A mB m mϕϕΦ=+= 由波动问题及解在0ρ→有限的条件,方程(2)的解为cos sin n n n n n T C k at D k at =+例2 用()J x ν的级数表达式证明:(1) x x x J cos 2)(21π=-; (2) x x d x J sin cos )cos (200=⎰πθθθ证明:(1) 因为20(1)()()!(1)2k k v v k xJ x k k v ∞+=-=Γ++∑, 所以12221002220(1)()())122!(1)2k k kk k k kk k x x J x k k ∞∞--==∞∞==-==Γ-+==∑2k k k x ∞∞=====(2)2212202000(1)(cos )cos ()cos (!)2k kk k x J x d d k ππθθθθθ∞+=-=∑⎰⎰222200(1)(2)!!(1)2!sin ()()(!)2(21)!!(!)2(21)!!k k k k k k k x k x k xk k k k x ∞∞==--===++∑∑ 例3 利用Bessel 函数的递推公式: (1) 将)(3x J 用)(0x J 及)(1x J 表出;(2) 证明 )]()(2)([41)(''2''''2''x J x J x J x J n n n n +-+-=.(3) 证明 )]()([2)]([21212x J x J v xx J dx d v v v +--=.(4) 证明 )]()([)]()([212010x J x J x x J x xJ dxd -=.(5) 证明 ⎰+-=C x x xJ x x xJ xdx x J cos )(sin )(sin )(100. (1) 解 由 )()(2)(11x J xx mJ x J m m m -+-=得 )()(2)(012x J xx J x J -=021********()4()4()84()()8()(1)()()J x J x J x J x J x J x J x J x x x x x x=-=--=-- (2) 证明:由'111()[()()]2m m m J x J x J x -+=-得''''1122221()[()()]21111{[()()][()()]}[()2()()]2224m m m m m m m m m m J x J x J x J x J x J x J x J x J x J x -+-+-+=-=---=-+ (3) 证明: 由11()[()()2v v v x J x J x J x v +-=+,'111()[()()]2m m m J x J x J x -+=-得 '22112()()[()()]2v v v v xJ x J x J x J x v-+=-即22211[()][()()]2v v v d xJ x J x J x d v-+=- (4) 证明:用贝塞尔函数的递推公式,得:01011011002201()()[()()]()()()()()()[()()]dJ x dJ x dxJ x J x xJ x xJ x d dx dxJ x xJ x J x xJ x x J x J x =+=-+=-(5) 证明:用贝塞尔函数的递推公式,得:001001001001()sin ()sin [()cos ()sin ]()sin ()cos ()cos ()sin ()cos [()cos ()cos ]()sin ()cos Jx xdx xJ x x x J x x J x x dxxJ x x xJ x xdx xJ x d xxJ x x xJ x xdx xJ x x xJ x xdx xJ x x xJ x x C=--=--=---=-+⎰⎰⎰⎰⎰⎰例4 计算⎰dx ax J x )(03。