描述圆周运动快慢的物理量
- 格式:ppt
- 大小:404.00 KB
- 文档页数:13
匀速圆周运动质点沿圆周运动,在任意相等的时间里通过的圆弧长度都相等亦称“匀速率圆周运动”。
因为物体作圆周运动时速率不变,但速度方向随时发生变化。
所以匀速圆周运动的线速度是无时无刻在发生变化的。
描述匀速圆周运动快慢的物理量:1、线速度 v :①意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。
②定义:线速度的大小等于质点通过的弧长s与所用时间t的比值。
③单位:m/s④矢量:方向在圆周各点的切线方向上⑤就是物体做匀速圆周运动的瞬时速度⑥质点做匀速圆周运动时,线速度大小不变,但方向时刻在改变,故其线速度不是恒矢量。
⑦边缘相连接的物体,线速度相同。
2、角速度ω:①定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。
②单位:rad/s(弧度每秒)③矢量(中学阶段不讨论,用右手定则<安培定则>可判断方向,例如:当其在水平面上顺时针转动时角速度方向竖直向下)。
④质点做匀速圆周运动时,角速度ω恒定不变。
⑤同一物体上任意两点,除旋转中心外,角速度相同。
3、周期 T:①定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。
②单位:s(秒)。
③标量:只有大小。
④意义:定量描述匀速圆周运动的快慢。
半径相等时,周期长说明运动得慢,周期短说明运动得快。
⑤质点做匀速圆周运动时,周期恒定不变4、频率 f:①定义:周期的倒数(每秒内完成周期性运动的次数)叫频率。
②单位:Hz(赫)。
③标量:只有大小。
④意义:定量描述匀速圆周运动的快慢,频率高说明运动得快,频率低说明运动得慢。
⑤质点做匀速圆周运动时,频率恒定不变。
5、转速 n:①定义:做匀速圆周运动的质点每秒转过的圈数。
②单位:在国际单位制中为r/s(转每秒);常用单位为r/min(转每分)。
1 r/s=60 r/min。
(注:r=round 英:圈,圈数)③标量:只有大小。
④意义:实际中定量描述匀速圆周运动的快慢,转速高说明运动得快,转速低说明运动得慢。
高考物理一轮复习学案4.3 圆周运动及其应用一、描述圆周运动的物理量1.线速度:描述物体圆周运动快慢的物理量.v =Δs Δt =2πrT .2.角速度:描述物体绕圆心转动快慢的物理量.ω=ΔθΔt =2πT.3.周期和频率:描述物体绕圆心转动快慢的物理量.T =2πr v ,T =1f .4.向心加速度:描述速度方向变化快慢的物理量.a n =rω2=v 2r =ωv =4π2T2r .5.向心力:作用效果产生向心加速度,F n =ma n .6.相互关系:(1)v =ωr =2πTr =2πrf .(2)a =v 2r =r ω2=ωv =4π2T2r =4π2f 2r .(3)F n =ma n =m v 2r =m ω2r =mr 4π2T2=mr 4π2f 2.二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)定义:线速度大小不变的圆周运动 .(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动. (3)质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心. 2.非匀速圆周运动(1)定义:线速度大小、方向均发生变化的圆周运动. (2)合力的作用①合力沿速度方向的分量F t 产生切向加速度,F t =ma t ,它只改变速度的方向. ②合力沿半径方向的分量F n 产生向心加速度,F n =ma n ,它只改变速度的大小.三、离心运动1.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 2.受力特点(如图2所示)(1)当F =mrω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力. (4)当F >mrω2时,物体逐渐向圆心靠近,做向心运动. 图21.x-t 图象的理解核心素养一 圆周运动中的运动学分析1.对公式v =ωr 的理解当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.2.对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.特别提醒 在讨论v 、ω、r 之间的关系时,应运用控制变量法.核心素养二 圆周运动中的动力学分析1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 3、绳、杆模型涉及的临界问题绳模型 杆模型常见类型均是没有支撑的小球均是有支撑的小球 过最高点的临界条件由mg =m v 2r 得v 临=gr由小球恰能做圆周运动得v 临=0 讨论分析(1)过最高点时,v ≥gr ,F N +mg =m v 2r,绳、轨道对球产生弹力F N (2)不能过最高点时,v <gr ,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心(2)当0<v <gr 时,-F N +mg=m v 2r,F N 背向圆心,随v 的增大而减小 (3)当v =gr 时,F N =0(4)当v >gr 时,F N +mg =m v 2r,F N 指向圆心并随v 的增大而增大一、单项选择题1.A 、B 两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们( )A .线速度大小之比为4∶3B .角速度大小之比为3∶4C .圆周运动的半径之比为2∶1D .向心加速度大小之比为1∶2解析:因为相同时间内他们通过的路程之比是4∶3,根据v =st ,知A 、B 的线速度之比为4∶3,故A 正确;运动方向改变的角度之比为3∶2,根据ω=Δθt,知角速度之比为3∶2,故B 错误;根据v =ωr 可得圆周运动的半径之比为r 1r 2=43×23=89,故C 错误;根据a =v ω得,向心加速度之比为a 1a 2=v 1ω1v 2ω2=43×32=21,故D 错误.答案:A2.(2019·辽宁大连模拟)如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算知该女运动员( )A .受到的拉力为GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g解析:对女运动员受力分析如图所示,F 1=F cos 30°,F 2=F sin 30°,F 2=G ,由牛顿第二定律得F 1=ma ,所以a =3g ,F =2G ,B 正确.答案:B 一、单选题1.如图所示,自行车后轮和齿轮共轴,M 、N 分别是后轮和齿轮边缘上的两点,在齿轮带动后轮转动的过程中,下列说法正确的是( )A .M 点的线速度比N 点的大B .M 点的线速度比N 点的小C .M 点的角速度比N 点的大D .M 点的角速度比N 点的小2.野外骑行在近几年越来越流行,越来越受到人们的青睐,对于自行车的要求也在不断的提高,很多都是可变速的。
4描述匀速圆周运动的物理量必记知识点一、匀速圆周运动(1)定义:质点沿圆周运动,若在相等的时间内通过的弧长相等,若在相等的时间内通过的弧长相等,这种运动就叫匀速圆周运这种运动就叫匀速圆周运动.(2)运动学特征:角速度、周期和频率都是不变的;而线速度、向心加速度都是大小不变,方向时刻在变.所以,匀速圆周运动是变速运动、,是变加速运动,是变力作用下的曲线运动.所以匀速圆周中的“匀速”是指匀速率的意思,而不是指速度不变. 二、描述匀速圆周运动快慢的物理量(1)线速度:描述质点沿圆周运动的快慢,是矢量.①大小:ts v =,s 是质点在时间t 内走过的弧长.单位:m /s .②方向:沿圆弧上该点的切线方向.(2)角速度:描述质点绕圆心转动的快慢.定义式:tj w =,(j 是质点和圆心的连线在时间t 内转过的角度.单位:rad /s .)(3)周期T :做匀速圆周运动的质点运动一周所用的时间.单位:s .(4)频率f :做匀速圆周运动的质点在单位时间内沿圆周走过的圈数,也叫转速.叫频率时单位是Hz ,叫转速时(用n 表示)单位是r /s .(转/秒) 三、v 、ω、T 、f 之间的内在关系:fR R T Rt sv p w p 22==== f Rv T t p p j w 22==== fvR T 122===wpp (注意:ω、T 、f 三个量中任意一个确定,另外两个量也就确定了.) 四、v 、ω、T 、f 之间的外在关系:①任何两个(或两个以上)的物体,如果绕同一根轴转动(或者绕同一圆心做圆周运动),那么它们的角速度ω、周期T 、频率f 必相等.②任何两个通过皮带相连接的转轮(或两个相吻合的齿轮).当轮子转动时,皮带上的任意点与两轮边缘上的任何点的线速度v 大小必相等. 五、向心加速度:描述线速度方向改变的快慢,是矢量. ①大小:ww .22v R Rv a ===. ②方向:总是指向圆心,时刻在变化.典型题一、慨念应用题型1、如图所示,为皮带传动装置,右轮半径为r ,a 为它边缘上的一点,左侧是大轮轴,大轮半径为4r ,小轮半径为2r ,b 为小轮上一点,b 到小轮中心距离为r ,c .d 分别位于小轮和大轮的边缘上,若在传动中不打滑,则 ( ) A .a 点与b 点线速度大小相等B .a 点与b 点角速度大小相等C .a 点与c 点线速度大小相等D .a 点与d 点向心加速度大小相等2、如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:r 1=2r 2,r 3=1.5r 1,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为 .角速度之比为 .周期之比为 .3、如图所示,在轮B 上固定有同轴小轮A ,轮B 通过皮带带动轮C ,皮带和两轮之间无相对滑动,A 、B 、C 三轮的半径依次为r 1、r 2和r 3,绕在A 轮边的绳子一端固定在A 轮边缘上,另一端系有重物P .当重物P 以速度v 匀速下落时,C 轮转动的角速度为 .4、如图所示,甲、乙两球做匀速圆周运动,向心加速度随半径变化.由图象可以知 道 ( ) A .甲球运动时,线速度大小保持不变B .甲球运动时,角速度大小保持不变C .乙球运动时,线速度大小保持不变D .乙球运动时,角速度大小保持不变 二、由圆周运动的周期性引起的多解问题 5、如图所示,、如图所示,一直径为一直径为d 纸质圆筒以角速度ω绕轴O 高速转动,现有一颗子弹沿直径穿过圆筒,若子弹在圆筒转动不到半周时,在筒上留下a 、b 两个弹孔,已知a0、b0间夹角为j ,则子弹的速率为 ( ) A .pwj 2d B .jw dC .jp w -2d D .jp w -d6、如图所示的装置可测量子弹的飞行速度,在一根轴上相隔S=1m 处安装两个平行的薄圆盘,使轴带动两圆盘以n=3000r /min 匀速转动,飞行的子弹平行于轴沿一直线穿过两圆盘,即在盘上留下两个孔,现测得两小孔所在半径间的夹角为300,子弹飞行速度大小可能是下述的 ( ) A .500m /s B .600m /s C .700m /s D .800m /s 7、如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v = ,圆盘转动的角速度ω= 。
描述圆周运动快慢的物理量知识点一、匀速圆周运动1、定义:质点沿圆周运动,如果在的时间里通过的圆弧长度.这种运动就叫做匀速圆周运动.2、运动轨迹是3、速度方向沿时刻在变化。
4、运动性质知识点二、线速度1、定义:质点沿圆周运动通过的所需的比值叫做线速度。
2、物理意义:描述质点沿圆周3、大小:4、方向:质点在圆周上某点的线速度方向沿圆周上该点的。
【疑难点拨】(1)匀速圆周运动的线速度大小不变,但方向时刻发生改变,所以它是变速曲线运动。
(2)匀速圆周运动物体的线速度就是物体的瞬时速度。
知识点三、角速度1、定义:在圆周运动中,连接运动质点和圆心的半径转过的与所用的比值,就是质点运动的角速度。
2、物理意义:描述质点绕圆心.3、大小:4、单位,符号是【疑难点拨】(1)对某一确定的匀速圆周运动而言,角速度ω是恒定的(2)弧度和度之间的转换1800=πr a d知识点四、周期T,频率f和转速n1、周期:匀速圆周运动的物体所用的时间。
用符号表示,国际单位是。
2、频率:周期的倒数,表示完成的周期数。
用符号表示,国际单位是。
3、周期和频率的关系:4、转速:内转过的圈数。
用n表示,单位是或【疑难点拨】对某一确定的匀速圆周运动而言,周期T,频率f和转速n是恒定的知识点五、线速度、角速度、周期、频率之间的关系1、线速度与周期V=2、角速度与周期ω=3、线速度与角速度V=4、讨论V=ωr1)当v一定时,ω与r成反比2)当ω一定时及v与r成正比3)当r一定时,v与ω成正比皮带传动中的相同量与不相同量1.在皮带传动中,若皮带不打滑,皮带上各点以及与皮带相接触的主动轮、从动轮边缘上的各点线速度相等.2.同一轮上各点(不论是主动轮,还是从动轮),尽管转动的半径不同,但在相同时间内半径转过的角度,所以角速度.1、下列四组物理量中,都是矢量的一组是( )A .线速度、转速B .角速度、角度C .时间、路程D .线速度、位移2、当物体做匀速圆周运动时,下列说法中正确的是( )A .物体处于平衡状态B .物体由于做匀速圆周运动而没有惯性C .物体的速度由于发生变化而会有加速度D .物体由于速度发生变化而受合力作用3、如图所示,a 、b 是地球赤道上的两点,b 、c 是地球表面上不同纬度上的两个点,若a 、b 、c 三点随地球的自转都看作是匀速圆周运动,则下列说法中正确的是( )A .a , b , c 三点的角速度相同B .a 、b 两点的线速度相同C .b 、c 两点的线速度相同D .b 、c 两点的轨道半径相 4、关于线速度和角速度,下列说法中正确的是( ) A .半径一定,线速度与角速度成正比。
匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系:①v r r Trf rn ====ωπππ222②ωπππ===222T f n ③T f n ==11.(5)向心加速度:描述线速度方向变化快慢的物理量.大小:a v r r r Tf r n r n =====22222222444ωπππ方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3.匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4.物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5.向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A 的线速度必定大于球B 的线速度B.球A 的角速度必定小于球B 的角速度C.球A 的运动周期必定小于球B 的运动周期D.球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224.则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。
匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
ʏ王栋轨迹是圆周或者一段圆弧的机械运动叫圆周运动,在相等的时间里通过的圆弧长度相等的圆周运动叫匀速圆周运动,在相等的时间里通过的圆弧长度不相等的圆周运动叫变速圆周运动㊂描述圆周运动的物理量有线速度㊁角速度㊁周期㊁频率㊁转速㊁向心力㊁向心加速度等,物体做圆周运动遵循一定的物理规律,下面逐一阐述相关物理量和基本规律的具体内容,供同学们参考㊂一㊁描述圆周运动的物理量解读1.线速度(v):描述做圆周运动的物体到达某一点时运动快慢的物理量㊂线速度的大小等于弧长与通过这段弧长所用时间的比值,用公式表达为v=st;线速度的方向为物体通过某点时该点的切线方向㊂2.角速度(ω):描述做圆周运动的物体绕圆心转动快慢的物理量㊂角速度的大小等于物体做圆周运动的半径转过的角度与所用时间的比值,用公式表达为ω=φt㊂在国际单位制中,角速度的单位是弧度每秒(r a d/s),在运算中可以简写为 s-1 ㊂角速度是矢量,在中学阶段,只需关注其大小,不要求判断其方向㊂3.周期(T):做匀速圆周运动的物体,运动一周所用的时间㊂4.频率(f):做匀速圆周运动的物体,在1s 时间内所转过的圆周数㊂频率的单位为s-1,为了纪念德国物理学家赫兹对物理学研究的贡献,人们将频率的单位命名为赫兹(H z)㊂5.转速(n):做匀速圆周运动的物体转动的圈数与所用时间的比值㊂转速的常用单位转每秒(r/s)或转每分(r/m i n)都不是国际单位制中的单位,在运算中需要换算成弧度每秒(r a d/s)㊂6.向心力(F n):做匀速圆周运动的物体所受的始终指向圆心的合力㊂向心力不是性质力,而是效果力,它可以是由某个性质力提供的,也可以是由几个性质力的合力提供的,因此在受力分析示意图中不能作为物体受到的性质力单独标注出来㊂7.向心加速度(a n):物体做匀速圆周运动时,始终指向圆心的加速度㊂向心加速度的方向与向心力的方向相同,与线速度的方向垂直;向心加速度的大小可以根据速度或角速度大小与半径利用公式a n=v2r=ω2r求出,也可以根据牛顿第二定律利用公式a n= F nm求出㊂二㊁圆周运动基本规律解读1.描述圆周运动物理量之间的关系㊂(1)线速度与角速度的关系:在圆周运动中,线速度的大小等于角速度大小与半径的乘积,用公式表达为v=ωr㊂(2)周期与线速度的关系:在匀速圆周运动中,周期等于周长与线速度的比值,用公式表达为T=2πrv㊂(3)频率和周期的关系:频率和周期互为倒数关系,用公式表达为f=1T㊂(4)向心力大小的表达式:F n=m a n= mω2r=m v2r㊂例1如图1所示,一个内壁光滑的圆锥图1形筒的轴线垂直于水平面,圆锥筒固定不动,圆锥筒的轴线与侧面间的夹角为θ㊂两个质量相等的小球A和B紧贴着圆锥筒内壁分别在图中所示的水平面内做匀速圆周运动,下列说法中正确的是()㊂33物理部分㊃知识结构与拓展高一使用2022年2月Copyright©博看网. All Rights Reserved.A .小球A 对筒壁的压力大于小球B 对筒壁的压力B .小球A 的角速度等于小球B 的角速度C .小球A 的运动周期小于小球B 的运动周期D .小球A 的线速度大于小球B的线速度设两小球的质量为m ,两小球在各自所在水平面内做匀速圆周运动,两小球受到的向心力必定在水平面内指向圆心㊂作出小球A 或B 的受力分 图2析示意图如图2所示,小球的向心力由重力和支持力的合力提供,则N s i n θ=m g ,N c o s θ=m ω2r =m v 2r ,解得N =m gs i n θ,即两小球受到的支持力相等,根据牛顿第三定律可知,两小球对筒壁的压力相等,选项A 错误㊂根据N c o s θ=m ω2r ,r A >r B 可知,小球A 的角速度小于小球B 的角速度,选项B 错误㊂根据T =2πω,ωA <ωB 可知,小球A 的运动周期大于小球B 的运动周期,选项C 错误㊂根据N c o s θ=m v2r,r A >r B 可知,小球A 的线速度大于小球B 的线速度,选项D 正确㊂答案:D2.三种传动方式遵循的物理规律分析㊂ 图3(1)共轴转动:如图3所示,A ㊁B 两点在同轴的一个 圆盘 上,到轴(圆心)O 的距离不同㊂当 圆盘 绕轴转动时,A ㊁B 两点分别以半径r 和R (r <R )做圆周运动,则A ㊁B 两点的运动特点是转动方向相同,线速度㊁角速度㊁周期满足关系式ωA =ωB ,T A =T B ,v A v B =rR㊂图4(2)皮带传动:如图4所示,A ㊁B 两点分别是两个轮子边缘上的点,两个轮子用皮带连接起来,且皮带不打滑㊂当皮带转动时,A ㊁B 两点随轮子一起转动,则A ㊁B 两点的运动特点是转动方向相同,线速度㊁角速度㊁周期满足关系式v A =v B ,T A T B =Rr ,ωA ωB =rR㊂ 图5(3)齿轮传动:如图5所示,A ㊁B 两点分别是两个用齿啮合的齿轮边缘上的点,两个齿轮的半径分别为r ㊁R ,齿数分别为n A ㊁n B ㊂当齿轮转动时,在相同时间内两个齿轮转过的齿数相等,则A ㊁B 两点的运动特点是转动方向相反,线速度㊁角速度㊁周期满足关系式v A =v B ,T A T B =r R =n A n B ,ωA ωB =R r =n Bn A㊂ 图6例2 如图6所示为一皮带传动装置,主动轮的半径为r 1,从动轮的半径为r 2(r 1>r 2),M 为主动轮边缘上的点,N 为从动轮边缘上的点㊂已知主动轮沿顺时针方向转动,转速为n 1(单位为r /s ),转动过程中皮带不打滑㊂下列说法中正确的是( )㊂A.从动轮沿顺时针方向转动B .从动轮的转速为r 1r 2n 1C .M 点的线速度大小为r 22r 1n 1D .N 点的线速度大小为r 22r 1n1主动轮沿顺时针方向转动时,传送带沿M ңN 方向运动,故从动轮沿逆时针方向转动,选项A 错误㊂两个轮子由皮带传动,M 点和N 点的线速度大小相同,即v M =v N ,根据ω=2πn ,v =ωr可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,选项B 正确,C ㊁D 错误㊂答案:B作者单位:甘肃省武威第十八中学(责任编辑 张 巧)43 物理部分㊃知识结构与拓展 高一使用 2022年2月Copyright ©博看网. All Rights Reserved.。
查补易混易错点06圆周运动1.巧记知识1易错易混知识大全知识点一描述圆周运动的物理量1.描述圆周运动的物理量定义、意义公式、单位线速度(v)①描述圆周运动的物体运动快慢的物理量②是矢量,方向和半径垂直,和圆周相切①v=ΔsΔt(定义式)=2πrT(与周期的关系)②单位:m/s角速度(ω)①描述物体绕圆心转动快慢的物理量②是矢量,但不研究其方向①ω=ΔθΔt(定义式)=2πT(与周期的关系)②单位:rad/s③ω与v的关系:v=ωr周期(T)转速(n)频率(f)①周期是物体沿圆周运动一周所用的时间,周期的倒数为频率②转速是单位时间内物体转过的圈数①T=2πrv=1f(与频率的关系)②T的单位:sn的单位:r/s、r/minf的单位:Hz向心加速度(an)①描述线速度方向变化快慢的物理量②方向指向圆心①an=v2r=ω2r=4π2T2r=ωv②单位:m/s22.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,所做的运动就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.圆周运动的动力学问题1.匀速圆周运动的向心力(1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小.(2)大小Fn=m v2r=mrω2=m4π2T2r=mωv.(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力.(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.2.离心运动和近心运动(1)离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.(2)受力特点(如图)①当F=0时,物体沿切线方向飞出,做匀速直线运动.②当0<F<mrω2时,物体逐渐远离圆心,做离心运动.③当F>mrω2时,物体逐渐向圆心靠近,做近心运动.(3)本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做匀速圆周运动需要的向心力.知识点三实验:探究影响向心力大小的因素实验方案一 用绳和沙袋定性研究如图甲所示,绳子的一端拴一个小沙袋(或其他小物体),在离小沙袋重心40cm的地方打一个绳结A,在离小沙袋重心80cm的地方打另一个绳结B.同学甲看手表计时,同学乙按下列步骤操作:步骤1:手握绳结A,如图乙所示,使沙袋在水平方向上做匀速圆周运动,每秒运动1周.体会此时绳子拉力的大小.步骤2:手仍然握绳结A,但使沙袋在水平方向上每秒运动2周.体会此时绳子拉力的大小.步骤3:改为手握绳结B,使沙袋在水平方向上每秒运动1周.体会此时绳子拉力的大小.步骤1和步骤2两者相比,可以比较在半径相同的情况下,向心力大小与角速度的关系.步骤1和步骤3两者相比,可以比较在角速度相同的情况下,向心力大小与半径的关系.实验方案二 利用向心力演示器探究向心力演示器如图所示.转动手柄1,可使变速塔轮2和3以及长槽4和短槽5随之匀速转动.皮带分别套在塔轮2和3上的不同圆盘上,可使两个槽内的小球分别以几种不同的角速度做匀速圆周运动.小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂的杠杆使弹簧测力套筒7下降,从而露出标尺8,标尺8上露出的红白相间等分格子的多少可以显示出两个球所受向心力的大小.1.皮带套在塔轮2、3半径相同的圆盘上,小球转动半径和转动角速度相同时,可以探究向心力与小球质量的关系.2.皮带套在塔轮2、3半径相同的圆盘上,小球转动角速度和质量相同时,可以探究向心力与转动半径的关系.3.皮带套在塔轮2、3的不同半径的圆盘上,小球质量相同、转动半径相同时,可以探究向心力与角速度的关系.实验方案三 利用力传感器和光电传感器探究如图所示,利用力传感器测量重物做圆周运动的向心力,利用天平、刻度尺、光电传感器分别测量重物的质量m,做圆周运动的半径r及角速度ω.实验过程中,力传感器与DIS数据分析系统相连,可直接显示力的大小.光电传感器与DIS数据分析系统相连,可直接显示挡光条挡光的时间,由挡光条的宽度和挡光条做圆周运动的半径,可得到重物做圆周运动的角速度.实验时采用控制变量的方法,分别研究向心力与质量、半径、角速度的关系.实验结论:向心力大小与物体的质量成正比,与角速度的平方成正比,与转动半径成正比.2真题演练1(2021·北京·高考真题)如图所示,圆盘在水平面内以角速度ω绕中心轴匀速转动,圆盘上距轴r处的P点有一质量为m的小物体随圆盘一起转动。
专题4.4 圆周运动各物理量之间的关系、实例分析及多解问题一 圆周运动中的运动学分析 1.匀速圆周运动(1)定义:线速度大小不变的圆周运动。
(2)性质:加速度大小不变,方向总是指向圆心的变加速曲线运动。
2.描述匀速圆周运动的物理量定义、意义公式线速度、角速度、周期、向心加速度之间的关系(1)v =ωr =2πTr =2πrf 。
(2)a n =v 2r =r ω2=ωv =4π2T2r =4π2f 2r 。
4.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。
(2)摩擦传动:如图甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。
(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB。
【典例1】科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮。
若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺时针匀速转动时,下列说法正确的是( )A.小齿轮逆时针转动B.小齿轮每个齿的线速度均相同C.小齿轮的角速度是大齿轮角速度的3倍D.大齿轮每个齿的向心加速度大小是小齿轮的3倍【答案】 C【典例2】如图所示是一个玩具陀螺,a、b和c是陀螺表面上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A.a、b和c三点的线速度大小相等B .b 、c 两点的线速度始终相同C .b 、c 两点的角速度比a 点的大D .b 、c 两点的加速度比a 点的大 【答案】: D二 圆周运动中的动力学分析 1.匀速圆周运动的向心力(1)作用效果:产生向心加速度,只改变线速度的方向,不改变线速度的大小。
(2)大小:F =m v 2r =mr ω2=m 4π2r T2=m ωv =m ·4π2f 2r 。
圆周运动难点分析上海师范大学附属中学 李树祥一、描述匀速圆周运动快慢的物理量的应用 描述圆周运动快慢的物理量有线速度、角速度、周期、转速等,如何应用这些物理量呢?首先要充分利用几个运动学量之间的关系:n r T r r ππω22===v 22222244n r Tr r r a n π=π=ω==v ;其次要掌握如下结论:皮带和齿轮传动中,如果没有出现打滑情况,则轮缘上各点的线速度等大;同轴转动物体上各点的角速度任何时刻都相等。
例1、如图1所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来。
a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在转动过程中的:A .线速度大小之比为3∶2∶2B .角速度之比为3∶3∶2C .转速之比为2∶3∶2D .向心加速度大小之比为9∶6∶4 解析:A 、B 轮摩擦传动,故v a =v b ,ωa R A =ωb R B ,ωa ∶ωb =3∶2,B 、C 同轴,故ωb =ωc ,v b R B =v c R C,v b ∶v c =3∶2,因此v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc =3∶2∶2;转速之比等于角速度之比;由a =ωv 得:a a ∶a b ∶a c =9∶6∶4,故答案选D 。
例2、如图2所示,一种向自行车车灯供电的小发电机的上端有一半径R 0=1.0cm 的摩擦小轮,小轮与自行车车轮的边缘接触。
当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力。
自行车车轮的半径R 1=35cm ,小齿轮的半径R 2=4.0cm ,大齿轮的半径R 3=10.0cm 。
求大齿轮的转速n 1和摩擦小轮的转速n 2之比。
(假定摩擦小轮与自行车轮之间无相对滑动)解析:设摩擦小轮转动的角速度为ω0 ,自行车车轮转动的角速度为ω1,由于自行车车轮与摩擦小轮之间无相对滑动,有R 1ω1=R 0ω0 小齿轮转动的角速度与自行车轮转动的角速度相同,也为ω1.设大齿轮转动的角速度为ω,有R 3ω=R 2ω1又ω0=22n π,ω=12n π,由以上各式得312021R R R R n n =,代入数据得175221=n n二、向心力的理解(1)向心力是做匀速圆周运动的物体所受外力的合力。