动车组制动系统的组成与功能
- 格式:doc
- 大小:94.50 KB
- 文档页数:28
动车组制动系统的组成与功能一、刹车盘和刹车鞋:刹车盘是动车组制动系统的核心部件之一,位于车轮内侧的轮盖上。
在制动时,通过刹车盘与车轮的摩擦产生制动力,减小车轮转动的力矩,从而实现制动效果。
刹车盘一般采用合金刚铁制成,具有较高的热传导性能和耐磨性。
刹车鞋则是刹车盘提供制动力的关键部件,由摩擦片和压紧机构组成。
摩擦片与刹车盘接触,通过摩擦产生制动力。
二、气压控制装置:气压控制装置是动车组制动系统中的重要组成部分,负责控制刹车盘和刹车鞋的运行。
气压控制装置包括压缩空气供应系统、主气管、分枝管、缸组和排气装置等。
压缩空气供应系统通过空气压缩机将外界空气压缩后供应给系统中的气动元件,主气管将压缩空气传送到各个刹车缸组,分枝管将主气管分支到各个车厢。
缸组是气压控制装置中最主要的部件,由缸体、柱塞和弹簧等组成,通过气压的控制使刹车盘和刹车鞋实现制动和松开。
三、防滞制动系统:防滞制动系统是保证列车在紧急制动时不发生轮轨阻滞的重要系统。
它可以通过调整刹车盘与车轮的接触力,使列车在刹车时保持最大的牵引力。
防滞制动系统中的主要部件包括AAR控制器、电动刹车阀和轮轨力传感器。
AAR控制器根据轮轨的实时情况对电动刹车阀的开启程度进行调整,使刹车力得到最佳的控制。
轮轨力传感器通过检测轮轨之间的相对滑动速度来反馈给AAR控制器。
四、辅助刹车系统:辅助刹车系统包括电气制动和机械制动两部分。
电气制动是通过电子系统对电动机进行控制,将电能转化为制动力的过程。
机械制动是指通过手动操作机械装置,使刹车盘与车轮摩擦产生制动力。
辅助刹车系统主要用于降低列车速度和协助主制动系统制动。
1.制动功能:动车组制动系统可以根据列车运行状态和运营需求实现不同级别的制动。
通过控制刹车盘和刹车鞋,有效减速列车,并实现平稳停车。
2.安全保护功能:制动系统可以保护列车免受超速、滑轮轨、限流等异常情况的影响,保障列车和乘客的安全。
3.能量回收功能:动车组制动系统利用列车制动过程中释放出来的能量,通过电能回收装置将其转化为电能,再次供应给列车,以提高能源利用率。
第2章制动系统综述2.1 微机控制直通电空制动系统2.1.1 制动信号发生与传输部分该部分主要用来产生制动信号.并将信号传递到各车辆的MBCU或PBCU。
主要由制动控制器、调制及逻辑控制器、制动指令线等组成。
(1)制动控制器受司机控制产生常用或紧急制动指令。
在司机室还设有非常制动按纽开关、停放制动和强迫缓解等开关,用以产生相应的指令信号。
(2)调制及逻辑控制器调制及逻辑控制器同时接收ATP发出的指令,逻辑控制器还接收车长阀等发出的指令。
调制器将制动控制器或ATP的常用或紧急制动指令转换成相应的脉宽调制(PWM)信号。
逻辑控制器通过逻辑电路,使指令线在各工况下发出相应的指令信号。
(3)制动指令线用于传递制动指令。
2.1.2 微机制动控制单位(MBCU)MBCU是微机控制直通电空制动系统的关键部件,它是一台进行制动和防滑控制的微机,为该系统的关键部件。
其主要功能如下:(1)接受和检测制动指令、空重车信号和速度信号。
(2)根据列车运行速度、车重和制动指令计算所需的常用制动力。
(3)按充分发挥动力制动能力的原则,进行动力制动与空气制动的配合控制。
使空气制动力等于所需的制动力减去动力制动力。
(4)为提高列车的舒适度,进行常用制动防冲动控制。
(5)通过动车MBCU 与拖车MBCU 之间的通讯联系.实现拖车利用动车动力制动能力的滞后充气控制。
(6)检测轮对速度,进行防滑控制。
(7)检测制动系统状态.将有关信号向列车计算机网络报告.自动记录并显示故障信息、对特殊的故障做出应急处理2.1.3 气制动控制单元(PBCU)PBCU将制动指令由电信号转变为相应的空气压力信号,由EP阀、非常制动单元、停放制动阀、中继阀及压力传感器等组成。
它与MBCU一起构成微机控制直通电空制动系统的制动缸压力控制。
2.1.4 转向架制动系统该系统由基础制动装置、防滑电磁阀和速度传感器组成基础制动装置是空气制动的执行元件。
速度传感器用于检测轮对转速.以便MBCU 进行防滑控制。
浅析CRH380B型动车组制动系统控制技术CRH380B型动车组是中国铁路的高速动车组列车,其制动系统控制技术是保证列车安全运行的重要组成部分。
本文将从动车组制动系统的组成和原理、制动系统的控制技术及其特点等方面进行浅析。
CRH380B型动车组制动系统由空气制动系统和电磁制动系统组成,具有双重制动能力。
空气制动系统是动车组主要的制动系统,它利用空气压力通过管路和刹车软管传输到制动装置上,从而实现车辆的制动。
电磁制动系统则是在空气制动系统的基础上进行升级和改进,能够在高速行驶时提供更快速的制动效果。
空气制动系统的原理是通过空气压力来传送力量,从而实现列车的制动。
当司机操作制动手柄时,通过阀门控制空气压力的流动,进而控制制动装置的工作。
制动装置包括制动鼓、制动片、汽缸等部件,当汽缸内充满空气时,制动片受力挤压制动鼓,从而达到制动的目的。
电磁制动系统则是通过电磁力来实现列车的制动,在高速行驶时能够更加快速、更加安全地实现列车的制动。
电磁制动系统通过电磁线圈产生磁场,从而产生制动力,在列车行驶时通过控制电磁制动的力度实现列车的制动。
1. 制动控制系统CRH380B型动车组的制动控制系统主要采用自动控制和手动辅助控制相结合的方式。
在自动控制模式下,列车的制动系统能够自动根据车速、列车状态等信息实现制动操作,从而保证列车在各种运行情况下都能安全平稳地制动。
在手动辅助控制模式下,司机可以根据实际情况进行手动控制,以应对特殊情况或紧急情况。
CRH380B型动车组的制动力分配系统能够根据列车的实际负载、运行速度等参数,自动调整每个车厢的制动力分配,从而保证列车整体制动效果的均衡和平稳。
这种智能化的制动力分配系统能够提高列车的运行安全性和舒适性。
CRH380B型动车组还配备有多种制动辅助系统,如防抱死系统、牵引制动系统等,这些系统能够在列车制动时提供额外的辅助性能,从而提高列车的制动效果和安全性。
防抱死系统能够根据车轮速度和阻滞情况实时调整制动力度,从而避免车轮因过度阻滞而失去牵引力。
动车组技术结课论文动车组制动系统的组成与功用班级:交设1105班姓名:肖征伟学号:**********动车组制动系统的组成与功用随着高速列车时代的到来,高速便捷越来越被人们追求。
速度提高的同时,制动系统也要不断地优化,以适应列车在高速行驶状态下确保乘客与车辆的安全。
在课堂上我们观看了许多列车的交通事故,都是由列车运行系统中一些不完善的地方导致的,因此列车制动系统的优化和提高也是很关键的而一部分。
高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:制动热容量和机械制动部件磨耗寿命的限制;摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响;纯空气制动作用情况下,紧急制动距离不可避免的延长。
因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动与空气制动联合作用,且以电制动为主。
复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动;空气制动;防滑装置;制动控制系统。
一、电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,应用在200公里动车组上的主要有电阻制动和再生制动两种。
电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。
下面分别就这两种制动方式加以介绍:1、电阻制动司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。
当速度大于25km/h时,制动主回路构成,然后制动接触器动作,随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入。
此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。
2、再生制动与电阻制动相比,再生制动的主回路中没有了主电阻器。
动车组制动系统结构组成
动车组制动系统主要由以下几个部分组成:
1. 制动机构:包括制动盘/鼓、刹车片/鞋、制动缸等。
制动机
构通过施加摩擦力来减速或停车。
2. 制动传动系统:包括制动杆、制动杆杆头、制动杠等部件,用于传递制动操作力到制动机构。
3. 制动液压系统:包括主缸、助力缸、制动液管路等。
制动液压系统通过液压力量来传递制动力到制动机构,提供更可靠的制动效果和更好的操控性。
4. 制动控制系统:包括制动踏板、制动灯等。
制动控制系统由驾驶员操控,用于控制制动系统的启停和力度。
5. 制动辅助系统:包括制动盘散热器、制动均衡器等。
制动辅助系统用于提高制动性能和安全性,保证制动系统的正常工作。
以上是动车组制动系统的主要组成部分,不同型号和品牌的动车组制动系统可能会有所差异。
CRH动车组驱动装置的刹车与制动性能分析CRH动车组一直以其高速、高效、高质量的特点著称于世,其驱动装置的刹车与制动性能更是其安全运行的重要保证。
本文将对CRH动
车组驱动装置的刹车与制动性能进行深入分析。
CRH动车组的驱动装置在行驶过程中需要通过刹车系统实现减速和停车的功能。
其制动系统主要由制动盘、制动钳、制动块以及刹车系
统控制器等部件组成。
制动盘通过制动钳夹紧制动块,产生摩擦力,
将动车组减速至安全范围内。
CRH动车组的刹车系统具有响应速度快、制动力强等优点,有效提升了动车组的运行安全性。
在实际运行中,CRH动车组的刹车性能得到了广泛认可。
制动时的制动盘温度、刹车距离、制动力平稳性等关键指标均达到或超过国际
标准。
同时,刹车系统的自检功能和自动调整系统能够及时调整制动
系统的性能,确保刹车效果持续稳定。
另外,CRH动车组的制动性能也是其运行安全的重要保障。
制动时的制动盘磨损、制动块磨损、制动力分配等因素都对制动性能产生影响。
CRH动车组通过定期检测和维护,保证了制动系统的正常运行。
此外,CRH动车组还采用了智能制动系统,通过传感器和控制器实时
监测制动系统的工作状态,及时发现并修复问题,确保了制动性能的
稳定性。
综上所述,CRH动车组驱动装置的刹车与制动性能表现优异,为动车组的安全运行提供了重要保证。
同时,动车组在制动系统的设计、
制造、维护等方面也不断进行创新和升级,不断提升制动性能,确保
乘客的出行安全和舒适。
希望本文的分析能够为CRH动车组的制动系统提供一定的参考价值,推动其持续发展和完善。
动车组制动系统的概念动车组制动系统是指用于控制动车组列车运行速度、保障列车行车安全的一套装置和系统。
在列车行驶过程中,为了减低列车的运行速度、保持列车的稳定性和行车安全,必须通过制动系统实现对列车的制动。
动车组制动系统主要包括两个方面:动力制动和电力制动。
动力制动是指通过动车组的牵引系统,将电能转化为机械能,通过制动电阻和制动盘将机械能转化为热能的过程。
动力制动分为电阻制动和再生制动两种方式。
电阻制动是指通过将列车的牵引电机切除,然后通过将列车的牵引电压接到制动电阻上,通过电流通过制动电阻产生的电阻热量来减低列车的速度。
电阻制动的主要特点是制动力稳定可靠,制动操作简单,但能量消耗大,制动过程中发热量较大,需要相应的散热措施来保证制动系统正常工作。
再生制动是指通过将列车的牵引电机调整为发电状态,将列车产生的制动能量通过逆变器回馈到供电系统中,以实现列车动力系统的能量循环再生。
再生制动的主要特点是能够将列车制动能量有效的回馈到供电系统中,减少能量损失,提高能源利用效率。
再生制动的缺点是制动力较电阻制动小,制动过程中对列车的牵引系统和供电系统都会产生较大的负荷,需要相应的控制措施来保证系统安全可靠。
电力制动是指通过电动制动装置,将列车的动能转化为电能,通过电阻器或电容设备将电能转化为热能并散失,从而实现对列车的制动。
电力制动主要分为直接电力制动和交流电力制动两种方式。
直接电力制动是指通过将列车的牵引电机切除,然后通过将制动电源接到列车的牵引电机上,使列车的牵引电机工作在发电状态下,将列车的动能转化为电能,通过电阻器或电容设备将电能转化为热能和散失出去实现列车的制动。
直接电力制动的主要特点是制动力大,对列车的母线和牵引设备负荷较大。
交流电力制动是指通过将列车的牵引电机调整为发电状态,由电阻柜或电容柜控制牵引电机的发电过程,实现列车动力系统能量的循环再生和牵引电动机组对列车的制动。
交流电力制动的主要特点是制动感觉舒适,制动能量回馈效率高,制动力和制动方式可以根据列车情况进行灵活调整。
动车组制动系统的组成与功能高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:●制动热容量和机械制动部件磨耗寿命的限制●摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响●纯空气制动作用情况下,紧急制动距离不可避免的延长因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动与空气制动联合作用,且以电制动为主。
复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动空气制动防滑装置制动控制系统电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,应用在200公里动车组上的主要有电阻制动和再生制动两种。
电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。
下面分别就这两种制动方式加以介绍:一、电阻制动(一)系统构成(二)工作原理司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。
当速度大于25km/h时,制动主回路构成(PB转换器转为制动位置),然后制动接触器动作(B11闭合、P11打开、P13打开),随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入(L1闭合)。
此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。
二、再生制动(一)系统构成(二)工作原理与电阻制动相比,再生制动的主回路中没有了主电阻器。
制动时回路中各部件的动作与电阻制动时一样,只是电枢转动产生的电能要回馈到电网。
电制动具有摩擦部件少(仅有轴承)、维修工作量少、可以反复使用等优点,担负着动车组制动减速时的大部分能量。
但由于增加了控制装置和制动电阻等设备,使重量增加;而且,如果条件不具备就不能产生制动作用(即电制动失效)。
动车组制动系统的组成与功能高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:制动热容量和机械制动部件磨耗寿命的限制摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响纯空气制动作用情况下,紧急制动距离不可避免的延长因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动与空气制动联合作用,且以电制动为主。
复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动空气制动防滑装置制动控制系统电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,应用在200公里动车组上的主要有电阻制动和再生制动两种。
电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。
下面分别就这两种制动方式加以介绍:一、电阻制动(一)系统构成(二)工作原理司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。
当速度大于25km/h时,制动主回路构成(PB转换器转为制动位置),然后制动接触器动作(B11闭合、P11打开、P13打开),随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入(L1闭合)。
此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。
二、再生制动(一)系统构成(二)工作原理与电阻制动相比,再生制动的主回路中没有了主电阻器。
制动时回路中各部件的动作与电阻制动时一样,只是电枢转动产生的电能要回馈到电网。
电制动具有摩擦部件少(仅有轴承)、维修工作量少、可以反复使用等优点,担负着动车组制动减速时的大部分能量。
但由于增加了控制装置和制动电阻等设备,使重量增加;而且,如果条件不具备就不能产生制动作用(即电制动失效)。
因此,为提高可靠性,高速动车组的制动控制系统具有在电制动系统不能正常工作时,自动切换到摩擦制动系统的功能。
三、电制动的控制列车的电制动线是在制动控制器置于非常制动位或在ATC制动指令时得电。
但在低速时电制动力下降,如列车中各车的电制动转换不一致,列车有可能因各车辆制动力不同而造成纵向冲动;所以,在列车速度降低到一定值时,要将电制动同时转为空气制动。
空气制动系统虽然电制动可以提供强大的制动力,但目前空气制动对于高速动车组来说仍然不可或缺。
这是因为:直流电机的制动力随着列车速度的降低而减少,如不采取其他制动方式,列车就不可能完全停下来。
而交流电机虽然可通过改变转差来控制制动力的大小,理论上可使制动力不受列车速度的限制,但从高速到停止均能有效作用的、可靠的电制动装置尚处于研究阶段。
如前所述,动车组空气制动系统一般采用电气指令的直通式电空制动装置。
在本书中,我们将该装置分为压力空气供给系统、空气制动控制部分和基础制动装置三部分加以讲述。
一、压力空气供给系统(一)空气压缩机空气压缩机按其压缩方法可分为往复式和旋转式两种。
往复式空气压缩机由电动机通过联结器直接驱动,电动机轴直接带动曲轴使活塞动作,反复交替地进行吸气行程和压缩行程。
在吸气行程时吸气阀打开吸入空气。
在压缩行程时压缩空气克服排气阀弹簧的反力后排出。
一般经2级压缩可得到所需的900kPa的压缩空气。
旋转式空气压缩机采用电动机与压缩机直联的方式,旋转式空气压缩机又分为涡旋式和螺杆式两种。
涡旋式空气压缩机是由固定涡旋盘和运动涡旋盘组成。
当运动涡旋盘摆动时,固定涡旋盘和运动涡旋盘之间被分成月牙形空间,因为越向中心空间越小,所以从外部吸入的空气随着转动被压缩,然后克服安装在中心部排气阀弹簧的反力排出。
因为旋转式压缩机能连续排出压缩空气,所以空压机的振动、噪声和输出压缩空气的脉动都较小。
此外,由于固定涡旋盘和运动涡旋盘是非接触的,所以维修量也较少。
(二)安全阀安全阀安装在空气压缩机输出之后的总风缸上,在空气压力超过规定值时排出过剩的压缩空气,以防损坏空气设备。
(三)干燥装置干燥装置是为了防止管路、三室风缸及增压缸等气动部件腐蚀以及因冬季排水阀冻结而发生的设备故障,设置在空气压缩机输出管路上的装置。
以前除湿使用的是吸附材料(铝硅酸盐),现在开始使用体积小、质量轻,且不需电源的高效高分子空丝膜式除湿装置。
(四)三室风缸为贮存压缩空气,在动车组上设置了不同用途的风缸。
在目前使用的车辆中,是将一个圆柱形风缸分割为总风缸、制动风缸和控制风缸3个空气室,以减轻质量。
控制风缸是为空气弹簧等制动以外的系统供应压缩空气的风缸,制动风缸是制动专用的存储压缩空气的风缸。
在压缩空气供给系统中,由空气压缩机输出800-900kPa的压力空气,经该车的总风缸和总风管送到全列其它各车的总风缸。
在装有空气压缩机的车辆的总风缸处,设有为排出设定压力值以上压缩空气的安全阀(设定值为950kPa)。
在列车中设有多个空气压缩机时,由同步指令线来控制其同步工作,以使负荷平均化。
二、空气制动控制部分(一)空气制动控制装置在较早的动车组中,各种空气制动控制装置是分别用管路连接起来的;而目前运用的各种动车组,其各种阀、塞门多采用单元化方式集中安装在铝合金安装板的前面,以减轻质量和减少维护、检修工作量。
另外,为了检查的方便,在空气制动控制装置上还设置了测试口。
(二)电空转换阀(EP阀)电空转换阀安装在空气控制装置内,它由电磁线圈和给排阀等零部件构成。
当制动电子控制装置输出的空气制动指令量(电空转换阀电流)通过电磁线圈时就会产生与电流成比例的吸力,控制给排阀的开闭。
通过电空转换阀的控制,可将最大900kPa的输入空气压力(SR压力)变成与电空转换阀电流成比例的输出压力空气(AC压力)。
为防止在缓解时AC压力随电空转换阀温度的变化而变化,需要加偏流进行缓解补偿。
另外,为补偿AC压力上升和下降时所产生的压力差(约30kPa),即使是对于相同的制动级别,也要供给不同的电空转换阀电流以保证输出正确的AC压力。
(三)中继阀中继阀设在制动控制装置内,由给排阀杆、给排阀、复位弹簧等构成。
它将电空转换阀输出的AC压力和紧急电磁阀输出的紧急制动压力作为控制压力,向增压缸提供与此控制压力相应的增压缸空气压力。
在常用及非常制动指令时,从电空转换阀送来的AC压力进入AC室,在紧急制动时,从紧急电磁阀送来的紧急制动压力空气进入UB室。
这些压力空气输入后,使给排阀杆上移,顶开给排阀,由于给排阀的开启使SR压力空气通过给排阀口变为增压缸空气压力(制动作用)。
另外,增压缸压力空气还流入FB室产生反馈作用,当增压缸空气压力上升到与AC压力或紧急制动压力相同时,给排阀下移关闭阀口,SR压力空气停止向增压缸的流动(保压状态)。
这时的增压缸空气不论AC压力或紧急制动压力多大均与之相同。
反之,制动缓解时,AC压力或紧急制动压力降低导致给排阀杆下移,离开给排阀,增压缸压力空气从给排阀杆内部通路排入大气,呈缓解状态。
(四)压力调整阀压力调整阀输入总风缸的压力空气,输出紧急制动用的压力空气(根据车辆的不同设置一种或两种压力值)或踏面清扫装置用的压力空气。
它利用弹簧力和空气压力的差使膜板动作,进行空气压力调整。
弹簧力大小可通过安装在调整阀下部的调整螺钉来调整。
(五)电磁阀电磁阀由给排阀部和电磁阀部组成。
它通过电磁阀部线圈的励磁、消磁(得电或失电)使可动铁心动作来开闭给排阀。
电磁阀有ON型和OFF型两种。
电磁阀的形式用奇数和偶数表示。
ON型电磁阀(代号为奇数)在电磁阀励磁时输入口和输出口之间连通,同时排气口关闭;在消磁时输入孔关闭,同时输出口与排气口相通。
OFF型电磁阀(代号为偶数)与ON型电磁阀各通路的通断情况完全相反。
例如:在日本新干线动车组上,励磁后向踏面清扫装置输送压力空气,使增粘研磨快产生作用的“踏面清扫装置用电磁阀”是ON型(如VM13型)。
而紧急回路用的电磁阀励磁时关闭输入口,消磁时使制动缸得到紧急制动压力作用的是OFF 型电磁阀(如VM32型)。
(六)截断塞门截断塞门是为了在需要时将压力空气截断或排出而串在连接三室风缸、空气制动控制装置及增压缸等装置的管路前、后的部件。
(七)增压缸增压缸由空气缸、液压缸和防滑电磁阀等构成。
用于将空气压力转换为一定倍率的较高的液压,从而得到所需的闸片压力。
另外,增压缸上还装有访滑阀以及为解决由于访滑阀连续动作而产生不能制动问题的给排截断阀。
(八)制动缸动车组上的制动缸多为液压制动缸,按基础制动装置的动作方式大致可分为杠杆式和夹钳式,而后者又可分为浮动型和对置型两种。
液压制动缸的缸径和数量根据其结构和需要的制动力而定。
(九)管路管路的作用是将空气压缩机输出的压缩空气送给三室风缸及制动装置等各种用风设备;各设备根据空气流量的大小,分别采用3/4英寸或3/8英寸的管路来输送压力空气。
制动用压缩空气的流向为:空气压缩机→总风缸管→制动风缸→中继阀→增压缸。
三、基础制动装置(一)夹钳装置现在的动车组一般不再使用传统的杠杆式传动装置,而是普遍使用夹钳式装置。
该装置制动夹钳、支架和剪刀形的夹紧制动盘的本体组成,支架和本体之间用销轴联结。
本体上设有稳定制动力和防止振动的防振橡胶,本体在销轴上可以滑动以满足轮对左、右运动的要求。
另外,本体上还有间隙调整器。
(二)制动盘制动盘结构形式见图2-3。
按摩擦面的配置,制动盘可分为单摩擦面和双摩擦面两种。
按盘本身的结构,可分为整体式和由两个“半圆盘”用螺栓组装而成的“对半式”,这种对半分开式便于制动盘磨耗到限时更换,不需退轮。
按盘安装的位置可分为轴盘式和轮盘式,前者装在轴上,后者装在轮的两侧;动车组中的拖车一般采用轴盘式盘型制动装置,而动车采用轮盘式制动装置,因动车的车轴上要安装驱动装置,没有安装置动盘的位置。
由于制动盘是一个既受力又受热的零部件,不宜用过盈配合直接装在轴上,所以轴盘式通常要采用锻钢盘毂作为车轴与制动盘之间的过渡零件,而且在摩擦盘螺栓连接处要加装弹性套。
制动盘和盘毂之间采用多个径向弹性圆销实现浮动连接,受热时摩擦盘可以沿着径向弹性圆销完全自由地伸缩,以消除内应力。
考虑到制动盘要有良好的散热性,在制动盘的中间部分设计许多散热筋片。
这样,当车辆运行时,空气对流即达到散热作用。
(三)制动闸片闸片的形状均呈月牙形或扇形(图2-4),也有对称分成两半的,其好处是容易拆卸,特别适用于闸片与轨面空间很小的条件。
闸片上的散热槽有各种不同的形式,有横向槽、竖向槽和斜槽等,其作用都是增加摩擦面的贴合性,便于排除磨屑和散热。
动车组中的空气制动系统是这样协同工作的:压缩空气由电动空气压缩机产生,经由贯通全列车的总风管送到各车的总风缸,再经两个单向阀分别送到控制风缸和制动风缸。