空间向量的基
- 格式:ppt
- 大小:303.50 KB
- 文档页数:10
向量空间的基与维数结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.(i)零向量可由唯一地线性表示;(ii)V中每个向量都可由唯一地线性表示;(iii).结论 2 设,都是F上向量空间V的子空间. 若,,则,且.例 1 设和都是数域,且,则是上的向量空间.域F是F上向量空间,基是{1},.C是R向量空间,{ 1 , i} 是基,.R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.令,则F是一个数域,F是Q上的向量空间.1)1,线性无关:设,. 则(否则,,矛盾),因此.2) 1,,线性无关:设,,i=1,2,3 . ( 1 ),两端平方得,由于1,线性无关,故假如,则,且,即. 矛盾.因而故假如,则得,这与是无理数相矛盾. 因而将代入(1),便得这说明1,,线性无关.3) 1,,,线性无关:设,,i=1,2,3,4 . 则有. ( 2 )假如不全为零,则得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得又由1,线性无关得. 这样,我们证得了1,,,线性无关.故{1,,,}是F的一个基..例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.对任意的正整数n,可证得线性无关:设,使( 3 )取n+1个实数,使a b.由(3)知.即其中而. 用左乘(4)两端,得这说明线性无关.故C[a,b]是R上无限维向量空间.引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明证对s作数学归纳.当s=1 时,结论显然成立.设,且对个V的不等于V的子空间结论成立.下考虑V的子空间,,. 由归纳假设知故存在1) 当时,,故;2) 当时,由于,因此显然,,…,.且存在,使(否则,如果,,…,,, ,,使,,所以,即有,这与矛盾).这样,故例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.证取V的一个基,令. 对任意从中删去后剩下的个向量生成的V的子空间记为,则由引理知, 故存在令, 中任n个不同的向量线性无关,是V的基.设,有,且中任意n个不同的向量构成V的一个基.对任意,有.这样的子空间共有个. 由引理知存在令. 则||=k+1,且中任意n个不同的向量是V的基.这个过程进行下去,满足条件的无限集S即可找到.另证:设是V的一个基,令令让,,…,F互不相同,则由于其行列式是Vandermonde行列式,即故线性无关,是V的一个基. S中含无穷多个向量.例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.证:对s作数学归纳.当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,设,且对个V的子空间结论成立. 现考虑V的s个子空间,由归纳假设知存在V的一个基,使1)如果,那么即满足要求;2)如果. 不妨设∈, , 由最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的之外,F 中有非零数,使同理有 F 中非零数,使显然易证线性无关,是V的基,且满足要求.例 5 设W是的由全体形如的向量所生成的子空间, 证明证令(j)是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.对, i≠t,对, (j) ∈W.(j)容易验证}是线性无关的(共个向量)故而W中每个矩阵其迹为0. 因此,故引理 设是向量空间V 的子空间,则(i)(ii)例 6 设是F 上向量空间V 的子空间.(i) 证明:(ii)举一个例子,使上述严格不等式成立. 证(i)===(ii) 在中,令1w +2w +3w=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时∑=31dim i i w =2<3=∑=31dim i i w -()∑≤≤≤⋂nj i jiw w 1dim +dim(1w⋂2w ⋂3w ).例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,∀1α,2α∈F,AB(2211ααa a +)= 2211AB AB ααa a +=0,∴2211ααa a +∈ 0w ,∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w ,因而1w 是m F 的子空间 .01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩B -秩(AB).02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.)1秩B=n.此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,其中 t=n- 秩(AB) .则有1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.dim 1w =t=n-秩(AB)=秩B-秩(AB).)2秩B<n.令'0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '0w =n- 秩B>0.显然'0w ⊆0w .由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0w 的一个基. P=n-秩B>0.扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设j j tp j B b β∑+=1=0, j b ∈F, j=p+1,…,t.则B(j j tp j b β∑+=1)=0.即j j tp j b β∑+=1∈'w 故存在1b ,p b b ,...,2∈F ,使j j tp j b β∑+=1=i i pi b β∑=1.i i pi b β∑=1+jjtp j b β)(1∑+=-=0.而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。
空间向量的定义和基本定理一、空间向量的定义和基本定理1、空间向量与平面向量一样,在空间中,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
2、空间向量基本定理(1)共线向量定理定理:对空间任意两个向量$\boldsymbol a$,$\boldsymbol b$($\boldsymbolb$≠0),$\boldsymbol a∥\boldsymbol b$的充要条件是存在实数$\lambda$,使$\boldsymbol a$=$λ\boldsymbol b$。
推论:如果$l$为经过已知点$A$且平行于已知非零向量$\boldsymbol a$的直线,那么对空间任一点$O$,点$P$在直线$l$上的充要条件是存在实数$t$,使$\overrightarrow{O P}=\overrightarrow{O A}+t\boldsymbol \alpha$①。
其中向量$\boldsymbol a$叫做直线$l$的方向向量。
在$l$上取$\overrightarrow{A B}=\boldsymbol a$,则①式可化为$\overrightarrow{O P}=\overrightarrow{O A}+t\overrightarrow{A B}$或$\overrightarrow{O P}=(1-t)\overrightarrow{O A}+t\o verrightarrow{O B}$②。
当$t=\frac{1}{2}$时,点$P$是线段$AB$的中点,则$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})$③。
①②式都叫做空间直线的向量表示,③式是线段$AB$的中点公式。
(2)共面向量定理定理:如果两个向量$\boldsymbol a$,$\boldsymbol b$不共线,那么向量$\boldsymbol p$与向量$\boldsymbol a$,$\boldsymbol b$共面的充要条件是存在唯一的有序实数对($x$,$y$),使$\boldsymbol p$=$x\boldsymbol a$+$y\boldsymbol b$。
空间向量考点(全)1、空间向量的坐标及基本运算空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标).=(a 1,a 2,a 3),),,(321b b b =, ),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a ++=⋅ ,向量平行:a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 。
向量垂直:0332211=++⇔⊥b a b a b a b a 。
222321a a a ++===⇒•=空间两个向量的夹角公式:232221232221332211||||,cos bb b a a a b a b a b a b a ba b a ++⋅++++=⋅•>=<ρρρρρ空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=. 2、法向量若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量a 叫做平面α的法向量. 3、向量的应用①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为||n ②.利用向量求异面直线间的距离d =(12,l l 是两异面直线,其公垂向量为n r,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.利用向量求直线AB 与平面所成角sin ||||AB m arc AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④.利用法向量求二面角的平面角定理 21,n n 分别是二面设角βα--l 中平面βα,的法21,n 所成的角就向量,则是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||m narc m n π⋅-u r ru r r (m u r ,n r 为平面α,β的法向量). ⑤.证直线和平面平行定理已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交). 4、向量的基本概念(1) 共线向量共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量,,共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立] ④若a 为非零向量,则0=.(√)[这里用到)0(≠b b λ之积仍为向量] (2) 共线向量定理AB对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3) 共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.(4) 证明四点共面的常用方法.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC四点共面的充要条件.(证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)4、向量的基本定理如果三个向量....c b a ,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用+=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r,则四点P 、A 、B 、C 是共面⇔1x y z ++=OABCD。
作为空间向量基底的条件公式The condition for a set of vectors to form a basis in a vector space can be determined by several criteria.向量空间中的一组向量形成基底的条件可以通过几个标准来确定。
First of all, for a set of vectors to form a basis, they must be linearly independent. This means that none of the vectors in the set can be represented as a linear combination of the other vectors. If one vector can be written as a linear combination of the others, then it is redundant and the set does not form a basis.首先,对于一组向量来形成基底,它们必须是线性无关的。
这意味着在集合中没有一个向量可以表示为其他向量的线性组合。
如果一个向量可以被写成其他向量的线性组合,那么它是多余的,这组向量就不构成基底。
Another important condition for a set of vectors to form a basis is that they must span the entire vector space. This means that any vector in the space can be represented as a linear combination of the basis vectors. If the set of vectors does not span the entire space, then it cannot be considered as a basis.另一个形成基底的重要条件是,它们必须跨越整个向量空间。