线性代数N维向量空间第4节基与维数
- 格式:ppt
- 大小:113.50 KB
- 文档页数:10
线性空间的基与维数线性空间是线性代数中的重要概念,它是由一组元素构成的集合,这些元素之间满足线性运算的性质。
在线性空间中,基与维数是两个重要的概念。
一、线性空间的基线性空间的基是指线性空间中的一组线性无关的元素,通过这组元素可以表示整个线性空间中的任意元素。
换言之,线性空间中的每个元素都可以唯一地由基中的元素线性组合而成。
线性空间的基具有以下特性:1. 基中的元素线性无关,即任意一个基中的元素不能被其他基中的元素线性表示。
2. 基中的元素张成整个线性空间,即线性空间中的任意元素都可以由基中的元素线性组合而成。
3. 基中的元素个数是唯一的,即同一个线性空间中的不同基所包含的元素个数是相同的,这个个数称为线性空间的维数。
二、线性空间的维数线性空间的维数是指线性空间中的基所包含的元素的个数,用整数表示。
维数是衡量线性空间大小的一个重要指标。
线性空间的维数具有以下性质:1. 对于一个线性空间,如果存在一个有限的基,则该线性空间的维数是有限的。
2. 对于一个线性空间,如果不存在有限的基,则该线性空间的维数是无限的。
维数是线性空间一个重要的性质,它决定了线性空间的很多性质。
在线性代数中,我们可以通过求解线性方程组的秩来确定线性空间的维数。
三、基与维数的应用基与维数在线性代数的各个分支中有广泛的应用。
以下是一些典型的应用场景:1. 线性变换的表示:线性变换可以由一个矩阵表示,基的选择与线性变换的矩阵表示密切相关。
2. 向量空间的表示:向量空间中的向量可以由线性组合表示,基的选择可以简化向量空间中向量的表示和计算。
3. 子空间的判断:基与维数可以用来判断一个子集是否构成了线性空间的子空间。
4. 线性方程组的解空间:线性方程组的解空间可以由基与维数表示。
总结:线性空间的基与维数是线性代数中的重要概念。
基是线性空间中一组线性无关的元素,可以表示线性空间中的任意元素;维数是基所包含的元素的个数,它决定了线性空间的很多性质。
维数和基的个数的关系
维数和基的个数是线性代数中的重要概念。
在n维向量空间V 中,如果存在一组线性无关的向量{v1,v2,……,vn},那么就称为V 的一组基,基的个数记作dim(V)。
同时,如果存在一组向量
{v1,v2,……,vm},能够生成V,即V中的任何向量都能够表示成它们的线性组合,那么就称为V的一个生成组,生成组中向量的最大个数记作rank(V)。
显然,rank(V) ≤ dim(V)。
维数和基的个数之间的关系可以由一个简单的定理描述:任何有限维向量空间V中的每个基含有相同数量的向量。
这个定理告诉我们,无论选择哪个基,它们的个数都是相同的。
这个定理也可以用来证明另外一个重要的结论:任何有限维向量空间V的任意两个基中,都存在一种线性变换把一个基变换成另一个基。
这个结论被称为基变换定理。
总之,维数和基的个数是线性代数中不可分割的重要概念,它们之间有着紧密的联系和相互依存的关系,对于研究线性代数的各种理论和应用都具有重要意义。
- 1 -。
基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。
(2)v中任一向量α总可以由α1,α2,,αn线性则表示。
那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。
如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。
基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。
解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。
基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。
⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。
⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。
基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。
证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。
方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。
例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。
一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。
线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。
定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。
R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。
基与维数的基本概念与应用线性代数是现代数学中非常重要的一部分,而作为线性代数的基本概念之一,基与维数在很多领域中都有着重要的应用和作用。
在本文中,我们将着眼于基与维数的基本概念和应用,希望能够给读者带来全面且深入的了解。
基的概念基是线性空间的一个基本概念。
在线性代数中,所谓线性空间就是一个向量空间的特殊情形,向量空间由向量组成,这些向量可以用数字来表示。
而基就是指这些向量的数量最少的子集,这个子集中的向量可以表示出这个向量空间中的其他所有向量。
具体来说,基的定义是:如果一个向量空间V中的向量集S有以下两个性质:1. 向量集S中的向量是线性无关的;2. 向量集S中的任意向量都可以用向量集S中的有限个向量线性组合表示(即,对于任意一个向量v∈V,都存在一组系数a1,a2,……,an使得v=a1s1+a2s2+……+ansn,其中si∈S,ai∈K,K是所在域)那么,S就是V的一个基。
基的一些性质包括:1. 基是线性无关的。
2. 基中的任意向量都不可由其他向量线性组合得到。
3. 维数相同的向量空间会有同样数量的基。
4. 所有向量空间都有基,包括零向量空间。
维数的概念维数是向量空间的另一个重要概念。
在数学中,向量空间的维数是指基中向量的数量的大小。
具体来说,如果一个向量空间V有一个n个线性无关向量的基,那么V就称为一个n维向量空间。
维数可以理解为空间中向量的独立自由度,向量空间的维数可以用来区分不同的向量空间,也用来确定矩阵的秩等重要性质。
基的应用基作为线性代数中的基本概念,应用十分广泛。
以下列举了一些基的应用:1. 矩阵乘法:矩阵乘法的前提是两个矩阵的行列数满足要求。
具体来说,矩阵A的列数必须等于矩阵B的行数。
而每一个矩阵可以看做是向量空间中向量的组合,因而矩阵的乘法实际上就是向量之间的线性组合,而基恰好是向量的组合表示。
2. 解方程组:在线性代数中,矩阵可以看做是线性方程组的系数,而矩阵的秩和向量空间的维数有密切关系。
线性空间维数与基的求法维数与基是线性空间V 的一个基本属性,它的确立对于我们认识线性空间有着很大的作用.因为确定了维数和基以后n 线性空间V 上任意向量的坐标(即n 元数组)也就相应确定了,在学习了线性空间的同构的知识后会知道,任意n 维线性空间V 都与n P 同构,这样,我们可以通过n P 的性质来研究任意n 线性空间V 的性质。
同时对维数与基概念的把握也是我们后面学习线性空间的同构、线性变换、欧氏空间的基础。
但是,鉴于它是线性空间的一个基本概念,多数教科书对于该部分的处理往往是泛泛而谈,比如文献1250P 例3更是一笔带过,这对学生深入理解相关概念造成了一定的障碍.虽然它的求法没有统一的方法,但却有着一致的要求,即要符合定义。
本文计划从以下两方面对维数与基的求法做进一步的归纳和总结,同时也是对《高等代数》250P 例3的补充说明,希望对初学者认识线性空间以及后续的学习有一定的帮助。
一、数域P 上的线性空间V ——数域P 的作用和角色凡是涉及数与空间中向量(取自集合V 中的元素)的乘积,即通常所说的数量乘法,其中的数都是取自数域P 。
例如:线性变换、同构定义中的第二条保持数量乘法,判别向量的线性相关性等这些问题都是依赖数域P 的。
同一线性空间V 指定数域的不同,通常对于我们的结果也会造成很大差别。
1.数域P 对线性空间V 的线性变换判别的影响例1:把复数域看作复数域上的线性空间,ξξ=A解:举反例如下,系数k 取自复数域i k =,)())(()(ai b bi a i k +-A =+A =A αai b --=,而ai b bi a i bi a i k +=-=+A =A )())(()(α,显然)()(ααA ≠A k k ,故变换A 不是线性的。
例2:把复数域看作实数域上的线性空间,ξξ=A解:系数k 取自实数域R k ∈,kbi ka kbi ka bi a k k -=+A =+A =A )())(()(α,kbi ka bi a k bi a k k -=-=+A =A )())(()(α,容易验证A 也保持向量的加法,故A 是线性的. 可见,同一线性空间的同一变换在不同数域上有些是线性的,有些不是线性的。
向量空间的基与维数定理一、基的定义与性质在向量空间中,基是指能够通过线性组合生成整个向量空间的一组向量。
具体来说,若向量空间V中的向量组{v1, v2, ..., vn}:1. 线性无关:任意一个向量vi都不能由其他向量的线性组合表示出来。
2. 生成性:任意一个向量v都可以表示成向量组{v1, v2, ..., vn}的线性组合。
二、基的存在性与维数定理对于任意一个向量空间V,都存在一组基。
而且,不同的基所含有的向量个数是相同的,称为这个向量空间的维数,记作dim(V)。
三、基的个数与维数之间的关系设V是一个有限维向量空间,则:1. 若V中存在有限个向量,它们组成了V的一组基,则称V是有限生成的;2. 若V是有限生成的,则V中的任何一组基所含有的向量个数都相同。
四、维数定理相关的证明与推论1. 维数定理的证明:设V为一个有限维向量空间,存在两个有限的基:{v1, v2, ..., vm} 和 {u1, u2, ..., un}。
首先,我们需要证明向量组{v1, v2, ..., vm}线性无关。
即对于任意一个向量的线性组合:a1v1 + a2v2 + ... + amvm = 0,若存在不全为零的系数a1, a2, ..., am,则上述方程成立,从而基{u1, u2, ..., un}中的向量也可以表示成{v1, v2, ..., vm}的线性组合,与其构成基的定义相矛盾,所以{v1, v2, ..., vm}是线性无关的。
其次,我们需要证明向量组{v1, v2, ..., vm}能生成整个向量空间V。
任意一个向量u都可以表示为基{u1, u2, ..., un}的线性组合:u = b1u1 + b2u2 + ... + bun,并且可以将基{u1, u2, ..., un}中的向量表示成基{v1, v2, ..., vm}的线性组合:ui = a1i v1 + a2i v2 + ... + ami vm,因此,u也可以表示成基{v1, v2, ..., vm}的线性组合:u = (b1a11 + b2a21 + ... + banan) v1 + (b1a12 + b2a22 + ... + banan) v2 + ... + (b1a1m + b2a2m + ... + banan) vm,即向量组{v1, v2, ..., vm}能够生成整个向量空间V。