高等代数、线性代数62维数基与坐标
- 格式:ppt
- 大小:316.50 KB
- 文档页数:16
在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。
维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。
一个向量空间可以有多组不同的维数基。
维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。
换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。
坐标是描述一个向量在给定维数基下的表示。
当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。
而坐标就是指这些线性组合中各个基向量的系数。
举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。
维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。
而坐标的选择也是由维数基的选择决定的。
通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。
但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。
在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。
对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。
维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。
维数基是向量空间的一组基础向量,用于表示空间中的任意向量。
坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。
本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。
2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。
一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。
2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。
•维数基可以通过线性组合生成空间中的任意向量。
•维数基的数量等于向量空间的维数。
2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。
3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。
坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。
3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。
常见的坐标系有笛卡尔坐标系、极坐标系等。
在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。
以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。
3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。
那么v 的坐标表示为 (a, b)。
4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。
§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。
一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。
线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。
定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。
R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。
线性代数中的基与维数线性代数是数学的一个分支,主要研究向量空间和线性映射的性质。
而在线性代数中,基与维数是两个重要的概念,它们扮演着关键的角色。
本文将详细讨论线性代数中的基与维数,并探讨它们的应用。
一、基与线性无关性在线性代数中,我们将向量空间中的一组向量称为基(basis),它们具有以下两个性质:1. 生成性:基中的向量可以通过线性组合生成向量空间中的任意向量。
2. 线性无关性:基中的向量不能通过线性组合得到零向量。
具体来说,设V是一个向量空间,若存在向量组B={v₁, v₂, ..., vₙ}满足以下两个条件,则称该向量组为V的基:1. 所有的向量v∈V都可以由B中的向量线性表出。
2. 如果B中的向量进行线性组合时等于零向量,那么必须其中的所有系数都等于零。
基的一个重要性质是线性无关性。
线性无关的向量组意味着每个向量都是独立的,不能由其他向量线性表示出来。
当一组向量线性无关时,它们的个数称为向量空间的维数。
二、维数的概念及性质在线性代数中,维数(dimension)是向量空间中独立向量的最大个数,记作dim(V)。
维数是衡量向量空间复杂程度的一个指标,它具有以下性质:1. 如果向量空间V中存在有限个向量使得它们线性无关,那么V的维数是有限的。
2. 如果在V中存在无穷多个向量,且它们线性无关,那么V的维数是无穷大。
3. 如果V的维数为n,那么V的任意一个基都包含n个向量。
4. 如果V的维数为n,那么V中的任意n+1个向量必然线性相关。
维数的计算方法也有一些常见的技巧。
对于有限维向量空间V而言,可以通过求解线性方程组的方法来求解维数。
另外,对于一些特殊的向量空间,也可以直接通过观察其内部的向量性质来确定维数。
三、基与维数的应用基与维数在线性代数中有广泛的应用,下面简要介绍几个常见的应用领域:1. 基变换与坐标系:在向量空间中,不同的基可以产生不同的坐标系,基变换就是在不同的基之间进行坐标的转换。
基、维数与坐标⏹基、维数的概念⏹坐标的概念基、维数与坐标定义2(1) α1,α2, …,αm 线性无关;(2) V 中任一向量都能由α1,α2, …,αm 表示,则称α1,α2, …,αm 为空间V 的一组基(或基底), 基与维数m 称为向量空间V 的维数,记为dim V =m ,设V 是数域p 上的向量空间,向量α1,α2, …,αm V ,如果并称V 是数域p 上的m 维向量空间.零空间的维数规定为零.基、维数与坐标2. 将向量空间V 的基的定义与向量组的极大线性无关组的定义相比较,不难看出,1. 向量空间的维数和该空间中向量的维数是两个不同的概念.若把向量空间V 看作一个向量组,那么它的基就是V 的一个极大线性无关组,dim V 就是V 的秩.3. 容易证明,若向量空间V 的维数是m ,那么V 中任意m 个线性无关的向量都是V 的一组基;对于向量空间V 的任一子空间V 1,dim V 1≤dim V .基、维数与坐标对于向量空间R n ,基本单位向量ε1, ε2, …, εn 就是它的一组基,有dim R n =n , 则称R n 为n 维实向量空间.在四维向量空间R 4中,向量组α1=(0, 0,0,1),α2=(0,1,0,1), α3=(-1,2,0,1),α4=(1,0,2,1)线性无关,所以它们也是R 4的一组基.基、维数与坐标定义3设α1,α2, …,αm 为向量空间V 的一组基,1122m m x x x ,则称有序数组由定理3.2.2,向量α的表示也是唯一的, α V , 有因此α基下α1,α2, …,αm 的坐标也是唯一的.坐标的概念x 1,x 2, …,x m 为向量α在基α1,α2, …,αm 下的坐标.记为(x 1,x 2, …,x m ).基、维数与坐标例4证明111002210A设α1=( 1,0,2),α2=(1,0,1), α3=(-1,2,0),证明α1,α2, α3是向量空间R 3的一组基,并求向量α=( 2,-3,5)在这组基下的坐标.以向量α1T ,α2 T , α3 T 为列向量做矩阵基、维数与坐标因为A 的行列式|A |=2≠0,,把α1,α2, α3代入,比较等式两端向量的对应分量,可得线性方程组112233x x x 设所以α1,α2, α3线性无关, 故它们是R 3的一组基.12331222325x x x x x x基、维数与坐标解之,得于是向量在α基α1,α2, α3下的坐标为12393,4,22x x x 93,4,22 ()。