第10章__热力学第一定律
- 格式:ppt
- 大小:890.50 KB
- 文档页数:42
热力学第一定律简述《热力学第一定律》是物理学中非常重要的一条定律,被称为“热力学三大定律”之一。
这一定律由德国物理学家弗里德里希蝴蝶(Friedrich Hermann von Helmholtz)提出,它宣称,任何动力学变化的改变都伴随着势能的变化,即动能的变化可以转换为热能。
由于势能变化和热能变化的相互关系,热力学得以成立。
热力学第一定律,也称为Helmholtz定律,其简单来说是:“在完全可定义的力学过程中,可以计算出全部热力学计算量,而这些热力学计算量完全相等。
”换句话说,在完全可定义的力学过程中,可以计算出所有变化的总能量。
这一定律表明,总能量在这一过程中是守恒的,它是描述热力学过程的基础。
热力学第一定律的由来也可以追溯到17世纪,时至今日它仍是物理学中最基础的原理之一。
英国物理学家叔本华(Isaac Newton)曾指出,他试图将物理学和化学联系起来,从而发展出动力学和热力学,他说:“能量是守恒的,但不是保持不变的”。
他的观点表明,能量守恒的概念形成了热力学的基础。
热力学第一定律的另一种表述是这样的:“在物理可定义的过程中,总能量不会减少或增加,因为能量是守恒的。
”这个定律有几个重要的含义:它意味着能量在物理过程中可以在形式上转换,但总量是不变的;它也意味着,在热力学过程中,能量在过程中只能转换,不能新增或减少。
热力学第一定律有其他重要的推论,例如热力学第二定律,它表明,生物体在维持热力平衡时,存在着温度差和能量流动,因此温度和熵也是能量守恒的载体。
它表明,动物体能量的改变本质上是由温度差引起的,这也是动物体维持生命的重要原理。
热力学第一定律的意义重大,它得到了广泛的应用,它对所有自然现象的解释都有着重要的作用。
它使热力学成为真正可用的工具,使得可以准确地预测物理系统的热力行为,从而为诸如热物理学、动力学等研究领域带来了重要的贡献。
热力学第一定律的发现使物理学的发展变得更加完整,为人类文明的发展做出了重要的贡献。
第二章 热力学第一定律 一、基本概念1. 系统与环境;状态与状态函数;过程与途径2. PVT 、相变化及化学变化独特的基本概念(略)3. 状态函数:内能、焓 →(H=U+pV )4. 途径函数:功、热★热——恒容热:Q V =ΔU →适用条件:封闭系统、恒容过程、W ’=0; 恒压热:Q p =ΔH →适用条件:封闭系统、恒压过程、W ’=0。
★功——W =-∫p amb d V :真空膨胀过程W =0 恒容过程W =0恒压过程W =-p ΔV ; 恒外压过程:W =-p amb ΔV5. pVT 变化基础热数据热容:C→C p , C V →C p,m ,C V ,m (理想气体的C p,m -C V ,m =R )6. 可逆相变化基础热数据摩尔相变焓:(),m p m p H T C βα∂∆=∆; ΔC p,m =C p,m (β)-C p,m (α) 7. 化学变化基础热数据:θθr m B f m B Δ(B)H H ν∆∑=; θθr m B c m BΔ(B)H H ν∆∑=-二、热力学第一定律:ΔU =Q + W 三、基本过程热数据计算 1. 理想气体pVT 变化过程恒容过程:W =0;,;V V m Q U nC T =∆=∆ ΔH=nC p,m ΔT恒压过程:,;P p m Q H nC T =∆=∆ ΔU=nC V ,m ΔT ;(W =ΔU — Q = — p ΔV ) 恒温可逆过程:ΔU=ΔH=0;—Q= W (可逆)=—nR T ln(V 2/V 1)=nR T ln(p 2/p 1) 恒温恒外压过程:ΔU=ΔH=0;—Q= W (不可逆)=—p amb ΔV绝热可逆过程:过程方程式(重要,自行总结,);Q=0;W =ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT绝热恒外压过程:Q=0;W =—p amb ΔV=ΔU=nC V ,m ΔT ;ΔH=nC p,m ΔT 节流膨胀:自行总结2. 相变化过程: 可逆相变(平衡温度及其平衡压力下的相变化过程):凝聚相相变化:W=0;ΔU =Q p =ΔH =m n H βα∆含气相相变化:Q p =ΔH = m n H βα∆;W =-p ΔV=-p (V 末-V 始);ΔU =Q p + W不可逆相变:状态函数法设计途径。
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。