第二章 热力学第一定律
- 格式:ppt
- 大小:3.06 MB
- 文档页数:37
第二章 热力学第一定律第一节 第一定律的实质及热力学能和总能能量守恒与转换定律是自然界的基本规律之一,它指出:自然界中的一切物质都具有能量,能量不可能被创造,也不能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量总量不变。
热力学第一定律是能量守恒与转换定律在热现象中的应用。
它确定了热力过程中热力系统与外界进行能量交换时,各种形态能量数量上的守恒关系。
一、热力学能热力学能是与物质内部粒子的微观运动和粒子的空间位置有关的能量。
它包括分子移动、转动、粒子震动运动的内动能和分子间由于相互作用力的存在而具有的内位能,故又称内能。
内动能取决于分子热运动,是温度的函数,而内位能取决于分子间的距离,是比体积的函数,即u = f ( T, v )二、总能除热力学能外,工质的总能量还包括工质在参考坐标系中作为一个整体,因有宏观运动速度而具有动能、因有不同高度而具有位能。
前一种能量称之为内部储存能,后两种能量则称之为外部储存能。
我们把内部储存能和外部储存能的总和,即热力学能与宏观运动动能和位能的总和,叫做工质的总储存能,简称总能。
即p k E U E E =++ (2-1)E---总能; U---热力学能; E k ---宏观动能; E p ---宏观位能。
第二节 第一定律的基本能量方程及工质的焓一、焓在有关热力计算总时常有U+pV 出现,为了简化公式和计算,把它定义为焓,用符号H 表示,即H=U+pV (2-2)1kg工质的焓值称为比焓,用h表示,即h=u+pv (2-3)焓的单位是J,比焓的单位是J/kg。
焓是一个状态参数,在任一平衡状态下,u、p和v都有一定得值,因而焓h也有一定的值,而与达到这一状态的路径无关。
当1kg工质通过一定的界面流入热力系统时,储存于它内部的热力学能当然随着也进入到系统中,同时还把从外部功源获得的推动功pv带进了系统。
因此系统中因引进1kg工质而获得的总能量是热力学能与推动功之和(u+pv),即比焓。
第二章热力学第一定律First law of thermodynamics First law of thermodynamics2–1 热力学第一定律的实质2-2 热力学能(内能)和总能2-22–3 热力学第一定律基本表达式2–4 闭口系基本能量方程式252–5 开口系能量方程12–1热力学第一定律的实质一、第一定律的实质能量守恒与转换定律在热现象中的应用。
二、第一定律的表述第定律的表述热是能的一种,机械能变热能,或热能变机械能的时候,他们之间的比值是一定的。
或:热可以变为功,功也可以变为热;一定量的热消失时必定产生相应量的功;消耗一定量的功时,必出现与之相应量的热。
22–2 热力学能(内能)和总能一、热力学能(internal energy)UU chU nu k平移动能U thU k 转动动能振动动能()T f 1),(v T U U =U p —()v T f ,2二、总(储存)能(total stored energy of system)、总(储存)能(o s o ed e e gy o sys e )++热力学能,内部储存能k pk pE U E E e u e e =++=3总能外部储存能宏观动能宏观位能宏观动能与内动能的区别2–3 热力学第一定律基本表达式加入系统的能量总和-热力系统输出的能量总和= 热力系总储存能的增量δW+d EE d Eδi im e δj jm e δQd ττ+τ流入:δδi iQ m e +∑流出:δδjjW m e+∑5内部贮能的增量:d E2–4 闭口系基本能量方程式τ⎡()()21tot δδj j i i Q E e m e m W τ⎤=∆+Σ−Σ+⎣⎦∫闭口系,δ0δ0i j m m ==忽略宏观动能U k 和位能U p ,E U∆=∆δd δδd δQ U W Q U W u wu w=∆+=+=∆+=+q q 第一定律第一解析式—功的基本表达式热7讨论:δd δU W U W =∆+=+δd δQ Q q u wq u w=∆+=+1)对于可逆过程δd d Q U p V=+2)对于循环netnetδd δQ U W QW =+⇒=∫∫∫ 3)对于定量工质吸热与升温关系,还取决于W 的”“+”、“–”、数值大小。
第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。