第二章_热力学第一定律公式总结
- 格式:ppt
- 大小:176.50 KB
- 文档页数:7
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
第二章 热力学第一定律主要公式及使用条件1. 1. 热力学第一定律的数学表示式W Q U +=Δ或'amb δδδd δdU Q W Q p V W =+=−+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 2. 焓的定义式pVU H +=3. 3. 焓变(1) )(pV U H Δ+Δ=Δ式中为乘积的增量,只有在恒压下)(pV ΔpV )()(12V V p pV −=Δ在数值上等于体积功。
(2) 2,m 1d p H nC Δ=∫T 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
2,m 1d V U nC Δ=∫T5. 5. 恒容热和恒压热(d V Q U =Δ0,'0)V W ==p Q H =Δ(d 0,'0)p W ==6. 6. 热容的定义式(1)定压热容和定容热容δ/d (/)p p C Q T H T p ==∂∂δ/d (/)V V C Q T U T ==∂∂V p V R 3(2)摩尔定压热容和摩尔定容热容,m m /(/)p p C C n H T ==∂∂,m m /(/)V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容),m //p p p c C m C M==式中m 和M 分别为物质的质量和摩尔质量。
(4),m ,m p V C C −=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系2,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()T p p T C T T T C =−∫7. 7. 摩尔蒸发焓与温度的关系21v ap m 2vap m 1v ap ,m ()()d T p T H T H T C T Δ=Δ+Δ∫或 vap m vap ,m (/)p p H T ∂Δ∂=ΔC d amb ∑−=−−=−−=式中 = C (g) —C (l),上式适用于恒压蒸发过程。
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =—p ΔV =-Δ(pV ),ΔU = Q —Δ(pV ) → ΔH = Q p 恒容+绝热(W '=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温:或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等. C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3。
18思考题第2,3,4题书2。
18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
ΔU = n C V , m d T T 2T 1∫ ΔH = n C p, md T T 2 T1∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)ΔH = Q p = n Δ H m αβ其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
第二章 热力学第一定律2.3热力学基本概念 1.系统:● 隔离系统:没有物质或能量的交换 ● 封闭系统:有能量交换● 敞开系统:有能量或物质的交换 2.热力学平衡态:(当系统的各种性质不随时间而改变,则系统就处于热力学平衡状态)热力学必须同时满足的条件平衡:热动平衡、力学平衡、相平衡、化学平衡。
2.3.1状态函数(当系统的状态发生变化时,它的一系列性质也随之变化,改变的多少取决于始态和终态)【异途同归,值变相等;周而复始,数值还原】 《m 、T 、、P 、V 、浓度、黏度、折光率、热力学能、焓、熵》 2.3.2 状态方程(),ν=T f p 与系统性质有关的函数2.3.3 过程和途径2.3.3.1 常见的变化过程有:● 等温过程:只有始终态温度不变● 恒温过程:在过程中温度一直持续不变 ● 等压过程:始终态压力相等且等于环境温度● 等容过程:系统变化过程中体积不变(刚性容器)● 绝热过程:系统与环境没有热交换(爆炸、快速燃烧)Q=0 ● 环状过程:系统经一系列变化又回到了原来的状态d 0∮ν= 、d 0∮=p 、d 0∮=U 、d 0∮=T状态函数的变化值仅取决于系统的始终态,而与中间具体的变化无关。
过程函数的特点:只有系统发生一个变化时才有过程函数 过程函数不仅与始终态有关还与途径有关没有全微分,只有微小量。
用δQ 、δw 表示环积分不一定为0 (不一定0∮δ=Q )2.3.4 热和功热的本质是分子无规则运动强度的一种体现,系统内部的能量交换不可能是热。
功和热都不是状态函数,其值与过程无关。
2.4热力学第一定律热力学能是指系统内分子运动的平动能、转动能、振动能、电子及核的能量,以及分子与分子之间相互作用的位能等能量的总和。
文字表述:第一类永动机是不可能造成的(既不靠外界提供能量,本身也不减少能量,却可以不断对外做功的机器称为第一类永动机)能量总量在转化过程中保持不变 系统热力学能的变化是:21∆=-=+U U U Q W系统发生微小变化,热力学能的变化d U 为:d δδ=+U Q W (状态函数)对于物质的量为定值的封闭系统,则微小变量的热力学能变化可以表示为:d d d ν⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭p TU U T p T p 2.5准静态过程与可逆过程2.5.1功与过程系统做的膨胀功为:e e d δ=-=-W F dl p V膨胀功分为 :✧ 自由膨胀(向真空膨胀)<W=0>:外压e p 为零的膨胀过程,由于e p =0所以,,10δ=e W ,系统对外不做功。
第二章 主要公式及适用条件热力学第一定律dU = δQ + δW 或 ∆U = Q + W一.体积功WdV p W amb -=⎰或 dV p W amb -=δ 适用于任何系统、任何过程的体积功的计算。
1.自由膨胀过程(向真空膨胀): W = 02.恒外压过程: )(12V V p W amb --=3.恒容过程:4. 恒压过程: )(12V V p W --= 一定量理想气体恒压过程 T nR W ∆-=5.一定量理想气体恒温可逆过程:1221ln ln p p nRT V V nRT W ==6.一定量理想气体绝热可逆过程W = ΔU = n C v.m (T 2-T 1) 或)11(1111211----=γγγγV V V p W(其中 γ = C p.m / C v.m 称为绝热指数 也称热容商。
)7.恒温恒压相变过程: W = - p (V β-V α )若β相为理想气体: W = - p V g = -nRT8.恒温恒压化学反应;且气体视为理想气体W = - R T(g ) (式中为反应计量系数,反应物为“-”,产物为“+”。
)二.热容热容定义 C = Q / ΔT = δQ / d TC v. m = δQ v / d T = (әU m / әT )vC p. m =δQ p / d T = (әH m /әT )p对理想气体 C p.m – C v.m = R单原子分子 C v.m = 3R /2 , C p.m = 5R / 2双原子分子 C v.m = 5R/2, C p.m =7R /2多原子分子 C v.m = 3 R , C p.m = 4 R三. 热1.封闭体系无非体积功恒容变温过程:dT nC Q T T m V V ⎰=21, 若常数=m V C ,,则)(12,T T nC Q m V V -=2.封闭体系无非体积功恒压变温过程: dT nC Q T T m p V ⎰=21,若常数=m p C ,,则)(12,T T nC Q m p p -=3.绝热过程及理想气体自由膨胀过程:Q = 04.恒温恒压无非体积功的相变过程:Q p = n ΔH m5.恒温恒压与恒温恒容化学反应 Q p 与Q v 关系:Q p –Q v = Δr H – Δr U = R T Δn或Q p.m –Q v.m = Δr H m – Δr U m = R T四.热力学能(内能):ΔU = Q + W1.一定量理想气体恒温过程或隔离体系任何过程 ΔU = 02.封闭体系无非体积功恒容变化或一定量理想气体任何过程dT nC U T T m V ⎰=∆21, 3.绝热过程:ΔU = W (Q =0)五.焓:定义: H = U + p V1. 封闭体系任何过程ΔH = ΔU + Δ(p V ) = ΔU + (p 2V 2 – p 2V 2 )2.封闭体系无非体积功的恒压变化或一定量理想气体任何状态变化过程dT nC H T T m p ⎰=∆21, 3.一定量理想气体恒温、实际气体节流膨胀及恒压无非体积功的绝热化学反应过程 ΔH = 0 。
第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。
热力学第一定律和第二定律的公式嘿,咱今天就来好好唠唠热力学第一定律和第二定律的公式!要说这热力学定律啊,那可是物理学中的重要宝贝。
先来说说热力学第一定律,它的公式是:ΔU = Q + W 。
这其中,ΔU 表示系统内能的变化,Q 代表系统吸收或放出的热量,W 是系统对外界所做的功或者外界对系统所做的功。
我还记得有一次给学生们讲这个公式的时候,有个小家伙瞪着大眼睛一脸懵地问我:“老师,这到底啥意思呀?”我笑着跟他说:“你就想象咱们家里的空调,夏天的时候它把屋里的热气吸走,这就是 Q ,然后它呼呼地吹风,这就是在做功 W ,最后咱们屋里就凉快了,这屋里温度的变化就相当于ΔU 。
”那孩子听完,似懂非懂地点点头。
这热力学第一定律告诉我们,能量是守恒的,不会凭空产生也不会凭空消失,只会从一种形式转化为另一种形式。
就好比咱们每天的生活,你学习花费的精力,会转化为知识存在你的脑袋里;你运动消耗的能量,会让你的身体更健康、更强壮。
再来说说热力学第二定律,它的表达式有好几种,常见的克劳修斯表述是:热量不能自发地从低温物体转移到高温物体。
开尔文表述则是:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
给你们讲讲我观察到的一件小事儿。
有次我去商场,看到卖冰淇淋的柜子,里面的冰淇淋冻得硬邦邦的,可周围的空气却是热的。
按照热力学第二定律,这热气里的能量可没法自己就跑到冰淇淋里让它更冷,除非有外界的力量帮忙,比如冰箱压缩机做功。
这热力学第二定律其实就是在告诉我们,自然界的很多过程都有个方向性,就像时间一样,只能向前走,没法倒回去。
比如说,你把一杯热水放在那,它会慢慢变凉,可这凉了的水不会自己又变热。
在实际生活中,热力学第二定律也很有用。
比如我们知道能源的利用不可能达到 100%的效率,所以我们要不断地改进技术,尽量减少能量的浪费。
像汽车发动机,就算再先进,也还是会有一部分能量以热能的形式散失掉。
总之,热力学第一定律和第二定律的公式虽然看起来有点复杂,但只要我们多联系生活中的实际例子,就能更好地理解它们。
二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。
气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。
温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。
三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。
Welcome !!! 欢迎您的下载,资料仅供参考!。