第5章-角动量角动量守恒定律
- 格式:ppt
- 大小:921.62 KB
- 文档页数:30
第5章 角动量 角动量守恒定律自测题答案一、选择题1、(D )2、(D )3、(D )4、(C )5、(B )6、(C )7、(D )8、(D )9、(A )10、(B ) 11、(B ) 12、(C) 13、(D) 14、(A ) 15、(C ) 16.(C ) 17、(A ) 18、(B ) 19、(B ) 20、(C ) 二、填空题1、ML 2T -1 ;2、s m kg /2⋅ ;3、不一定;4、不一定;5、动量;6、角动量;7、恒定;8、为零;9、mrv ; 10、角动量; 11、2; 12、m v d ; 13、不为零; 14、10; 15、6 。
三、计算题1.有一质量为0.5g 的质点位于平面上P(3,4)点处,其速度为j i v ϖϖϖ43+=,并受到了一力j F ϖϖ5.1=的作用。
求其对坐标原点的角动量和作用在其上的力矩。
解:质点对坐标原点的位矢为 j i r ϖϖϖ43+= (2分)则其对坐标原点的角动量为)43()43(105.03j i j i v m r L ϖϖϖϖϖϖϖ+⨯+⨯⨯=⨯=- (4分) 0= (1分) 作用在该质点上的力矩为j j i F r M ϖϖϖϖϖϖ5.1)43(⨯+=⨯= (4分)k ϖ5.4= (1分)2.一质量为1.0kg 的质点,受到一力j t i t F ϖϖϖ)43()12(-+-=的作用,其中t 以s 为单位,F ϖ以N 为单位。
开始时质点静止于坐标原点,求t =2s 时质点对原点的角动量。
解:质点的加速度为 j t i t a ϖϖϖ)43()12(-+-= (1分)由dtvd a ϖϖ=,得 (2分)jt t i t t dt j t i t dta v t ϖϖϖϖϖϖ)423()(])43()12[(220-+-=-+-==⎰⎰(2分)由dtrd v ϖϖ=,得 (2分)j t t i t t dt j t t i t tdtv r tϖϖϖϖϖϖ)221()2131(])423()[(2323022-+-=-+-==⎰⎰ (2分) 当t =2s 时, j i r ϖϖϖ432-=,j i v ϖϖϖ22-= j i F ϖϖϖ23+= (2分) 此时质点对原点的角动量为k j i j i v m r L ϖϖϖϖϖϖϖϖ326)22()432(=-⨯-=⨯= (1分)3.一质量为1.0kg 的质点,沿k j t i t r ϖϖϖϖ3)1()12(32+++-=曲线运动,其中t 的单位为s ,r ϖ的单位为m ,求在t =时质点对原点的角动量和作用在其上的力矩。
第五章角动量.关于对称性习题解答5.1.1我国发射的第一颗人造地球卫星近地点高度d近=439km,远地点d远=2384km,地球半径R=6370km,求卫星在近地点和远地点的速度之比。
解:人造卫星绕地心转动,受地球的吸引力过地心,所以吸引力对地心的力矩等于零,故卫星的角动量守恒。
近地点、远地点的速度与矢径垂直。
设近地点的速度为v1,矢径为r1;远地点的速度为v2,矢径为r2,根据角动量守恒定律5.1.2一个质量为m的质点沿着一条由定义的空间曲线运动,其中a、b及皆为常数。
求此质点所受的对原点的力矩。
解:已知所以根据牛顿第二定律,有心力对原点的力矩:5.1.3一个具有单位质量的质点在力场中运动,其中t是时间。
设该质点在t=0时位于原点,且速度为零。
求t=2时该质点所受的对原点的力矩。
所受的对原点的力矩。
解:因单位质量m=1 且又t=0时当t=2s时对原点的力矩5.1.4地球质量为6.01024kg,地球与太阳相距km,视地球为质点,它绕太阳作圆周运动。
求地球对于圆轨道中心的角动量。
解:地球绕太阳的速率角动量=2.65kg.m2/s5.1.5根据5.1.2题所给的条件,求该质点对原点的角动量。
解:由得对原点的角动量5.1.6解:根据5.1.3题所给的条件,求该质点在t=2s时对原点的角动量。
解:由m=1积分:t=2s 时5.1.7 水平光滑桌面中间有一光滑小孔,轻绳一端伸入孔中,另一端系一质量为10g的小球,沿半径为40cm的圆周作匀速圆周运动,这时从孔下拉绳的力为10-3N。
如果继续向下拉绳,而使小球沿半径为10cm的圆周作匀速圆周运动,这时小球的速率是多少?拉力所做的功是多少?解:小球受力:重力、桌面的支持力,二者相等;拉力,通过圆心,力矩为零。
所以小球的角动量守恒。
根据牛顿第二定律由动量定理拉力作的功5.1.8 一个质量为m的质点在0-xy平面内运动,其位置矢量为,其中a、b和是正常数。
试以运动方程及动力学方程观点证明该质点对于坐标原点角动量守恒。
理学院物理系陈强第5章角动量变化定理与角动量守恒§5-1. 角动量与力矩§5-2. 质点的角动量变化定理角动量守恒§5-3.质点组的角动量变化定理角动量守恒§5-4.有心运动12理学院物理系陈强第5章角动量变化定理与角动量守恒一.质点的角动量(动量矩)v m r p r L r r r r r ×≡×≡又称动量矩Oαdpr L1.定义:在惯性参考系中选一固定的参考点O ,运动质点对O 点的位矢r ,动量为p ,则质点对O 点的角动量为:mvdsin rmv sin rp L ===ααα为r 和p 两矢量间的夹角角动量L 的大小:§5-1. 角动量与力矩垂直于矢径r 和动量p 所组成的平面,角动量L 的方向:指向由右手螺旋法则确定.3理学院物理系陈强第5章角动量变化定理与角动量守恒mαO L = rmvL r v例:•角动量的大小和方向不仅决定于质点的运动也依赖于所选定的参考点,参考点不同,质点的动量矩不同。
注意:•角动量的单位千克·米2/秒(kg ·m 2/s)水平面上质点做匀速圆周运动4理学院物理系陈强第5章角动量变化定理与角动量守恒例如:vr r r m r L om O ×=vlm L O =方向变化v r r r m r L m o O ×=′′αsin v lm L O =′方向竖直向上不变O l αv r O ′锥摆m5理学院物理系陈强第5章角动量变化定理与角动量守恒2.角动量的分量表示v m r p r L rr r r r ×≡×≡在直角坐标系中:yz y z x m z ym zp yp L v v −=−=zx x y m zm zp L v v x xp z −=−=xy x y z m y xm yp xp L v v −=−=()z y x z y x p p p zy x k j i L ,L ,L r rr =kL j L i L L z y x rrrr ++==L r6理学院物理系陈强第5章角动量变化定理与角动量守恒二.力矩即F r M r r r ×=力矩的大小:Fr sin rF M 0==ααsin r r 0=——称力臂。
角动量定理和角动量守恒定律
角动量定理和角动量守恒定律是描述刚体运动时的两个基本定律。
下面进行简单的介绍:
1. 角动量定理
角动量定理是描述角动量变化的定律。
它表示为:物体所受外力矩等于物体角动量对时间的变化率。
即
I*ω= ΔL/Δt
其中,I 为物体的转动惯量,ω为物体的角速度,L 为物体的角动量。
这个定理表明了一个物体的角动量发生变化时,必定受到了外部的力矩作用,即力矩等于角动量的变化率。
2. 角动量守恒定律
角动量守恒定律是描述角动量不变的定律,即如果没有外部力矩作用,系统的总角动量保持不变。
即:
L = L0
其中,L 为系统的总角动量,L0 为系统在某一时刻的总角动量。
这个定律表明,如果没有外部力矩作用,那么系统的总角动量保持不变。
如果一个物体在自由运动时,角动量发生变化,那么它将会改变自身的旋转状态(比如转速、方向等)。
总之,角动量定理和角动量守恒定律是描述刚体运动和角动量变化的基本定理,可以帮助我们更好地理解物体的运动和变化规律。
角动量守恒定律的公式
1. 角动量守恒定律公式。
- 对于质点,角动量L = r× p(其中r是质点相对于某参考点的位矢,p = mv 是质点的动量,×表示矢量叉乘)。
- 在合外力矩M = 0时,角动量守恒,即L_1 = L_2。
- 对于定轴转动的刚体,角动量L = Iω(其中I是刚体对轴的转动惯量,ω是刚体的角速度)。
当合外力矩M = 0时,I_1ω_1=I_2ω_2。
2. 相关知识点(人教版教材相关内容补充)
- 转动惯量。
- 对于离散质点系,I=∑_im_ir_i^2,其中m_i是第i个质点的质量,r_i是该质点到转轴的垂直距离。
- 对于质量连续分布的刚体,I = ∫ r^2dm。
不同形状的刚体转动惯量有不同的计算公式,例如,对于质量为m、半径为R的均匀圆盘绕通过圆心且垂直于盘面的轴转动,其转动惯量I=(1)/(2)mR^2;对于质量为m、长为l的细棒绕通过中心且垂直于棒的轴转动,I=(1)/(12)ml^2。
- 角动量定理。
- 对于质点,M=(dL)/(dt)(M是合外力矩),这表明质点所受合外力矩等于它的角动量对时间的变化率。
- 对于刚体定轴转动,M = Iα(α是角加速度),结合L = Iω也可推导出
M=(dL)/(dt)。