2017-2018学年最新人教版八年级数学上册全册导学案
- 格式:doc
- 大小:4.05 MB
- 文档页数:81
新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
人教版数学八年级上册全册导学案第一学时:11.1.1三角形的边一、学习目标1.认识三角形,•能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法.三、合作探究知识点一:三角形概念及分类1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
图中三角形记作__________。
(2)三角形按角分类可分为_____________、______________、_________________。
(3)三角形按边分类可分为 _____________三角形 _____________——————— _____________(4)如图1,等腰三角形ABC 中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF 是特殊的_______三角形,DE=____=_____.图1四、练习一:1、如图.下列图形中是三角形的有_______________?A B C D E F A B C2、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:三角形任意两边的和大于第三边,任意两边的差小于第三边。
第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
导学案设计学科数学题目三角形的边设计者颜科华时间年级八教学目标了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;体会数学与现实生活的联系,增强克服困难的勇气和信心教学重点三角形的有关概念和符号表示,三角形三边间的不等关系教学难点用三角形三边不等关系判定三条线段可否组成三角形教学方法探究、合作、交流、练习教学过程:一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。
那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。
三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示、三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B→C,(2)从B→A→C;不一样,AB+A C>BC ①;因为两点之间线段最短。
同样地有 AC+BC>AB ②AB+BC>AC ③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边、四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:abc(1)CBA三角形 直角三角形斜三角形 锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
八年级第一学期数学全册导学案11.1.1 三角形的边一、知新通过预习教材P63-P65的内容,完成下面各题。
1、由不在()上的三条线段()所组成的图形叫做三角形。
可用符号(“”)表示。
2、三角形有三条边,三个内角,三个顶点,组成三角形的()叫做三角形的边,相邻两边所组成的角叫做三角形的内角,相邻两边的()是三角形的顶点。
3、如图,我们也可以小写字母表示三角形的边, A∠A的对边是BC,也可以用a表示;∠B的对边是(),可以用()表示; c b∠C的对边是 ( ),可以用( )表示。
B a C4、三角形的任意两边之和()第三边;任意两边之差()第三边。
5、三角形的分类(1)按角分类直角三角形三角形( )斜三角形( )(2)按边分类不等边三角形三角形底边和腰不等的三角形等腰三角形()二、小试身手(1)右图中有()个三角形,分别是(). B C D(2)三角形按角分类,可分为()A等腰锐角三角形、等腰直角三角形、等腰钝角三角形B等腰三角形、不等边三角形、等边三角形C锐角三角形、直角三角形、钝角三角形D等腰三角形、不等边三角形教学点1 三角形的有关概念A例1 如图所示,图中共有( )个三角形,其中以BC为边的三角形是( ), E G F∠BEC是( )的内角。
例2 在右图中三角形的个数为()个,分别是()BC教学点2三角形三边关系的运用例1下列长度的三条线段中,能组成三角形的是()A.3cm, 5cm, 8cmB.8cm, 8cm, 18cmC.0.1cm, 0.1cm, 0.1cmD.3cm, 40cm,8cm例2如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm 和12cm D.15cm例3以下列长度的三条线段为边,能构成三角形的有哪些?(1)6cm,8cm,10cm(2)5cm,8cm,2cm;(3)三条线段之比为4:5:6;(4)a+1,a+2,a+3(a>0)当堂检测1.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,82.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中就选取()A.10cm的木棒B. 50cm的木棒C .100cm的木棒 D.110cm的木棒3.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A.9cmB.12cmC.9cm 或12cmD.以上答案都不对小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m和5m的木棒,还需要到某木材市场上购买一根。
(2)下图中,每个三角形的三边各有什么特点? 连接所组第十一章三角形11.1与三角形有关的线段11.1.1三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。
新课导学: 三角形的有关概念一一阅读课本第1至3页,回答以下问题:(1)______________________________________ 三角形概念:由不在同一直线上的____________________________________________ 条线段________________成的图形。
(2)________________________________________________________ 三角形的表示法(如图1)三角形ABC可表示为: ___________________________________ ;(3)_____________________________ A ABC的顶点分别为A、、 ;(3) A ABC的内角分别为/ABC , _________ , ________ ;(4) A ABC的三条边分别为AB , _, _ ;或, ____________________ 、 ______ ;(5) _____________________ 顶点A的对边是 _________________ ,顶点B的对边分别是 ______________________________ ,顶点C的对边分别是三角形的分类: 图1路线AC DB距离比较(3)结合以上图形你认为三角形可以如何分类?试一试① 按角分类: ___________________________________________________________________ ② 按边分类: ___________________________________________________________________ (4) __________________________________ 在等腰三角形中, _______________ 叫做腰,另外一边叫做 ____________________________ ,两腰的夹角叫做 _________ , _____________________________ 叫做底角。
八年级上册数学全册导学案(人教版)本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 八年级上数学导学案2.1轴对称(一)学习目标:、理解什么是轴对称图形;2、理解什么是“两个图形关于一条直线对称”;3、能够说出轴对称与轴对称图形的区别与联系。
自学指导、自学29页,重点掌握___________,完成30页练习;2、自学课本30页,图12•1-3是____个图形,关系。
请找出图中A、B、c的对称点A′、B′、c′3、轴对称图形与轴对称的区别与联系展示内容、如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做___________,这条直线就是它的_________。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形________,那么就说这两个图形____________________。
3、教材P30练习与P31练习。
4、教材P30与P31的思考,找同学回答。
5、教材P36习题12.1的1、2.12.1轴对称学习目标、识记线段垂直平分线的定义2、理解轴对称图形的性质3、掌握并会用线段垂直平分线的性质二、自学指导(15分钟)认真阅读P31页思考-P32页探究前的内容(1)思考部分可在课本上沿mN对折或用测量的方法进行探究(2)探究部分要动手操作,找出你发现的规律:P1A=__,P2A=__,(特别注意l与线段AB的关系)由此可得到线段垂直平分线的性质:____________三、展示内容、如图,△ABc中,AD垂直平分Bc,AB=5,则Ac=__2、△ABc与△A,B,c,关于直线l对称,且AB=4cm,则A,B,=__3、如图△ABc与△DEF关于直线mN对称,直线mN与线段AD的关系是____4、如图△ABc中Bc的垂直平分线交AB于E,若△ABc的周长为10,Bc=4,则△AcE周长为___5、如图AD⊥Bc,BD=Dc,点c在AE的垂直平分线上,AB、cE的长度有什么关系,AB+BD与DE有什么关系?课题:12.1轴对称学习目标:、掌握线段垂直平分线的判定2、熟练运用线段垂直平分线的性质和判定解决实际问题。
课题12.1全等三角形的判定(一) (1)一、 学习目标1、 掌握全等形、全等三角形及相关概念和全等三角形性质。
2、 理解‚平移、翻折、旋转‛前后的图形全等。
3、 熟练 确定全等三角形的对应元素。
二 展示内容1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是________________。
87ABDE CFBCAD8、如图2,△ABC ≌△CDA ,AB 和CD ,BC 和DA 是对应边,写出其他对应边及对应角_____________________________。
9、如图3,△ABN ≌△ACM ,∠B =∠C ,AC =AB ,则BN =____,∠BAN=______,_____=AN,_____= ∠AMC.BD109ACCABMN E10、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?12.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式三、展示内容:1、P8,练习2、如图,AB=AD,CB=CD,求证:△ABC≌△ADC3、如图C是AB的中点,AD=CE,CD=BE,求证:△ACD≌△CBE4、如图,AD =BC ,AC =BD ,求证:(1)∠DAB =∠CBA (2)∠ACD =∠BDC5、如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证: (1)△ABC ≌△DEF(2)AB ∥DEB54ADC A BDE C12.2 全等三角形的判定(3)一、自学目标:1、会画一个三角形与已知三角形全等(根据两边与夹角对应相等)2、理解并掌握边角边的判定方法3、利用边角边判定方法解决实际问题4、探究具备‚SSA ‛条件的两个三角形是否全等? 二、展示内容:1、如图1已知△ABF 与△DCE 中,∠B =∠C ,BE =CF ,AB =CD ,则△___≌△____21AB CDA DE C C 2F E2、如图2已知AB =AC ,AD =AE ,∠1=∠2, 求证:△ABD ≌△ACE证明:∵∠1=∠2( )∴∠1+__=∠2+__( ) 即∠BAD =∠CAE 在△ABD 和△ACE 中____________( ) ____________( ) ____________( )∴___________( )3、如图要测量工件内槽宽,可以把两根钢条的中点连在一起,做成一个工具,只要测量出__的长,就是内槽的宽,为什么?s43ABA'B'ABCED4、如图AB =AC ,AD =AE ,求证:(1)∠B=∠C (2) ∠BDC =∠BEC12.2全等三角形的判定(三) (4)学习目标:1、 掌握全等三角形的判定方法---‚ASA ‛ ‚AAS ‛。
第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A 、1个B 、2个C 、3个D 、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A 、1B 、2C 、3D 、43、下列长度的各边能组成三角形的是( )A 、3cm 、12cm 、8cmB 、6cm 、8cm 、15cm 、3cm 、5cm D 、6.3cm 、6.3cm 、12cm 【B 】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
15.3 分式方程第1课时 分式方程及其解法1.理解分式方程的意义.2.掌握分式方程的基本思路和解法.3.理解分式方程可能无解的原因,并掌握解分式方程的验根的方法.阅读教材P 149~151,完成预习内容.知识探究1.填空:(1)分母中________有未知数的方程叫做整式方程(2)分母中__________的方程叫做分式方程.2.判断下列说法是否正确:①2x +32=5是分式方程;②34-4x =4x +3是分式方程; ③x 2x =1是分式方程;④1x +1=1y -1是分式方程. 3.解分式方程的一般步骤:(1)________;(2)________;(3)________;(4)________. 自学反馈1.下列方程中,哪些是分式方程?哪些是整式方程?①x -22=x 3;②4x +3y=7; ③1x -2=3x ;④x (x -1)x =-1; ⑤3-x π=x 2;⑥2x+x -15=10; ⑦x -1x =2;⑧2x +1x+3x =1.判断整式方程和分式方程的方法就是看分母中是否含有未知数.2.解方程:12x =2x +3.活动1 小组讨论例1 解方程:2x -1=4x 2-1. 解:方程两边乘(x +1)(x -1),得2(x +1)=4.解得x =1.检验:当x =1时,(x +1)(x -1)=0.∴x =1不是原分式方程的解.∴原分式方程无解.例2 解方程:(1)x x +1=2x 3x +3+1;(2)5x 2+x -1x 2-x=0. 解:(1)x =-32. (2)x =32. 活动2 跟踪训练1.解分式方程:(1)x x -1=32x -2-2; (2)x -3x -2+1=32-x; (3)2x 2x -1=1-2x +2.方程中分母是多项式,要先分解因式,再找公分母.活动3 课堂小结解分式方程的思路是: 分式方程――→去分母两边都乘以最简公分母一化二解三检验整式方程―→验根【预习导学】知识探究1.(1)不含 (2)含有未知数 2.①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数. 3.(1)去分母 (2)解整式方程 (3)验根 (4)小结自学反馈1.①⑤⑥是整式方程,因为分母中没有未知数.②③④⑦⑧是分式方程,因为分母中含有未知数. 2.x =1.【合作探究】活动2 跟踪训练1.(1)方程两边乘2x -2,得2x =3-2(2x -2).解得x =76.检验:当x =76时,2x -2≠0.所以,x =76是原方程的解.(2)方程两边乘x -2,得x -3+x -2=-3.解得x =1.检验:当x =1时,x -2≠0.所以,x =1是原方程的解.(3)方程两边乘(2x -1)(x +2),得2x(x +2)=(2x -1)(x +2)-2(2x -1).解得x =0.检验:当x =0时,(2x -1)(x +2)≠0.所以,x =0是原方程的解.。
第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是()A 、1个B 、2个C 、3个D 、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A 、1B 、2C 、3D 、43、下列长度的各边能组成三角形的是( )A 、3cm 、12cm 、8cmB 、6cm 、8cm 、15cm 、3cm 、5cm D 、6.3cm 、6.3cm 、12cm 【B 】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少?【C 】组(共小1-2题)6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是 。
小方有两根长度分别为5cm 、8cm 的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形.(1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数)(2)想一想:如果已知两边,则构成三角形的第三边的条件是什么? (3)如果第三边的长为偶数,那么第三条又有几种情况?第二课时 三角形的高、中线与角平分线(1)一、新课导入你还记得 “过直线外一点画已知直线的垂线”怎么画吗?二、学习目标1、了解三角形的高的概念;2、会用工具准确画出三角形的高。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
1、 定义:从三角形的一个 向它的 所在的直线作 , 和之间的线段,叫做三角形的高。
2、几何语言(图1) AD 是△ABC 的高 ∴AD ⊥BC 于点D (或∠ =∠ =90º) 逆向:AD ⊥BC 于点D (或∠ =∠ =90º) ∴AD 是△ABC 中BC 边上的高3、请画出下列三角形的高 A A AB C B C B C(1)(2) (3) 图1 A B C D Aa(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第三课时 三角形的高、中线与角平分线(2)一、新课导入请画出线段AB 的中点。
二、学习目标1、了解三角形的中线的概念;2、会用工具准确画出三角形的中线。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
(1)定义:连结三角形一个 和它对边 的线段,叫做三角形的中线。
(2)几何语言(右图)AD 是△ABC 的中线 ∴ =逆向:= ∴AD 是△ABC 的中线(3)画出下列三角形的中线(三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第四课时 三角形的高、中线与角平分线(3)一、新课导入请画出∠AOB 的角平分线。
二、学习目标1、了解三角形的角平分线的概念;A BA B C D(1) (2) (3)AOB2、会用工具准确画出三角形的角平分线。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
(1)定义:三角形一个内角的 与它的 相交,这个角 与之间的线段,叫做三角形的角平分线。
(2)几何语言(右图):AD 是△ABC 的角平分线 ∴∠ =∠逆向:∠ =∠ ∴AD 是△ABC 的角平分线(3)画出下列三角形的角平分线思考:三角形的角平分线与一个角的角平分线有何异同?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第五课时 三角形的稳定性(角)一、新课导入盖房子时,在窗框未安装好之前,木工师傅 常常先在窗框上斜钉一根木条(如右图),为什么 这样做呢?二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、自主探究 1、如图(1),用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 2、如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 3、如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(1) (2) (3)图3 A B C D 1 2活动2、议一议从上面实验过程你能得出什么结论?与同伴交流。
三角形木架形状改变,四边形木架形状改变,这就是说,三角形具有性,四边形不具有性。
斜钉一根木条的四边形木架的形状改变,原因是四边形变成了两个三角形,这样就利用了三角形的。
活动3、看一看,想一想三角形的稳定性和四角形的不稳定性在生活中都有广泛应用。
你知道课本图7.1-8和图7.1-9中的例子哪些是利用三角形的稳定性?哪些是利用四角形的不稳定性?你能再举一些例子吗?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?第六课时三角形的内角一、新课导入1、平行线有哪些性质?2、1平角= °;3、三角形的内角和等于°二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、自主探究在事先准备的三角形硬纸片上标出三个内角的编码(如图1),并将它的内角剪下拼合在一起,看看得到什么结果。
(图1)(图2)活动2、议一议从上面的操作过程你能得出什么结论?与同伴交流。
把一个三角形其中的两个角剪下拼在第三个角的顶点处(如图2、图3),形成了一个角。
说 中,。
从中得出:明在ABC三角形内角和定理。
活动3、想一想1、 如果我们不用剪、拼办法,可不可以用推理论证的方法来说明三角形内角和定理的正确性呢?2、 已知: . 求证: .证明:如右图,过点A 作直线DE ,使DE //BC因为DE //BC , 所以∠B =∠ ( ) 同理∠C=∠因为∠BAC 、∠DAB 、∠EAC 组成 角,所以∠BAC+∠DAB+∠EAC= ( ) 所以∠BAC + ∠B + ∠C= ( )说明:为了证明的需要,在原来图形上添画的线叫做辅助线,在平面几何里,辅助线通常用虚线表示。
3、思考:在图2中,CM 与ABC ∆的边AB 有什么关系?你能从中想出其他证明三角形内角和定理的方法吗? 活动4、例题如右下图,C 岛在A 岛的北偏东50方向, B 岛在A 岛的北偏东80方向,C 岛在B 岛的北偏西40方向,从C 岛看A 、B 两岛的视角ACB ∠是多少度? (先独立解决,再小组合作,教师点评) 解:∠CBA= - = 80°- 50°=30°由AD//BE,可得: + =180° 所以∠ABE=180°- =180°-80°=100°∠ABC= - =100°-40°=60°在⊿ABC 中,∠ABC=180°- - =180°- 60°- 30°=90° 答: 。
想一想:你还有其他解法吗?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第七课时 三角形的外角一、新课导入1、三角形的内角和定理:2、填空:(1) 在△ABC 中,∠A=300,∠B=500, 则∠C = 。
(2) 在直角△ABC 中,其中一个锐角是500, 则另一个锐角等于 。
二、学习目标1、探索并了解三角形的外角的两条性质2、利用学过的定理论证这些性质3、能利用三角形的外角性质解决实际问题 三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、做一做,把ABC ∆的一边AB 延长到D ,得ACD ∠,它不是三角形的内角,那它是三角形的什么角? 。
定义:三角形的一边与 组成的角,叫做三角形的外角。
想一想:三角形的外角有几个? .每个顶点处有 个外角,但它们是 。
活动2、议一议在图1中,ACD ∠与ABC ∆的内角有什么关系? (1)∠ACD = + ;(2)∠ACD ∠A , ∠ACD ∠B (填“<”、“=”“>”)。
再画ABC ∆的其他的外角试一试,还会得到这些结论吗?同学用几何语言叙述这个结论:三角形的一个外角等于 两个内角的 ;三角形的一个外角大于 任何一个内角。