弹塑性有限元分析
- 格式:ppt
- 大小:459.00 KB
- 文档页数:29
第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。
该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。
本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。
通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。
二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。
在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。
当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。
弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。
塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。
塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。
弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。
在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。
通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。
弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。
通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。
以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。
在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。
1. 问题阐述一个开口厚壁圆筒(如图1),内半径和外半径分别为mm a 20=和mm b 25=(壁厚为mm t 5=,壁厚与内径的比值20151255>==b t ),受到均匀内压p 。
材料为理想弹塑性碳钢(如图2),并遵守Mises 屈服准则,屈服强度为MP as 235=σ,弹性模量GPa E 210=,泊松比3.0=υ。
确定弹性极限内压力e p 和塑性极限内压力p p ,并观察塑性应变的增长。
图1 内压作用下的端部开口厚壁圆筒 图2 理想弹塑性模型 2. 基本理论计算2.1 基本方程由于受到内压p 的作用,厚壁圆筒壁上受到径向压应力r σ、周向压应力θσ和轴向应力z σ的作用,由开口的条件可推出0=z σ。
因为这是一个轴对称问题,所有的剪应力和剪应变均为零。
平衡方程和应变—位移关系用下式表示: 0=--rd d r r r σσσθ (1) r u dr du r r r ==θεε, (2) 弹性本构关系为:()()r r r EE υσσευσσεθθθ-=-=1,1 (3) 这些控制方程利用下面的边界条件联立求解:0,=-===b r r a r r p σσ (4)2.2 弹性情况联立式(2)、(3)和(4)可得⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛--=22222222221,1r b a b p a r b a b p a r θσσ (5) 因为b r a ≤≤,所以00>≤θσσ且r ,可以观察到:r z σσσθ≥=>0,分析采用Mises 屈服准则,表达为()()()()222222226s z rz r z z r r στττσσσσσσθθθθ=+++-+-+- (6)该厚壁圆筒是轴对称平面应变问题,即0===θθτττz rz r ,由Mises 屈服条件其表达式可得到:s s r σσσσθ155.132==-(7) 当内压p 较小时,厚壁圆筒处于弹性状态,令a r =,筒体内壁开始屈服,此时的内压为e p ,由式(5)、(7)联立可求得弹性极限压力为()2222155.1b a b p s e σ-= (8) 代入题目所给数据得到弹性极限强度为:()MPa p e 86.482522025235155.1222=⨯-⨯=。