高一数学不等式的解法举例(2019年8月整理)
- 格式:ppt
- 大小:270.00 KB
- 文档页数:8
实用精品文献资料分享
高一数学《一元二次不等式的解法》知识点整理
高一数学《一元二次不等式的解法》知识点整理
1.整式不等式的解法
根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
(自右向左正负相间)
则不等式的解可以根据各区间的符号确定.
特例① 一元一次不等式ax>b解的讨论;
②一元二次不等式ax2+box>0(a>,高中语文;0)解的讨论.
2.分式不等式的解法
(1)标准化:移项通分化为 >0(或<0); ≥0(或≤0)的形式,
(2)转化为整式不等式(组)
3.含绝对值不等式的解法
(1)公式法: ,与型的不等式的解法.
(2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
4.一元二次方程根的分布
一元二次方程ax2+bx+c=0(a≠0)
(1)根的“零分布”:根据判别式和韦达定理分析列式解之.
(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之。
高一数学运用的基本计算解不等式(二)主编:宁永辉老师主编单位:永辉中学生教育学习中心高考数学研究中心第二部分:解分式不等式(一)一、第一种题型: 【题型】:解不等式:0)()(>x g x f 。
【解法】:分为两种情况进行计算:0)(>x f 或者 0)(<x f 0)(>x g 0)(<x g解两个不等式组,求两个不等式组的并集得到分式不等式的解。
【经典题型】:【例题一】:解不等式:0121>--x x。
【解析】:第一步:分为两种情况进行计算: 01>-x 或者 01<-x 012>-x 012<-x 第二步:解第一个不等式组:1101<⇒->-⇒>-x x x ,2112012>⇒>⇒>-x x x ; 画数轴求两个不等式的交集得到不等式组的解:如下图所示:所以:第一个不等式组的解为:)1,21(∈x 。
第三步:解第二个不等式组:1101>⇒-<-⇒<-x x x ,2112012<⇒<⇒<-x x x ; 画数轴求两个不等式的交集得到不等式组的解:如下图所示:所以:第二个不等式组的解为:∅∈x 。
第四步:对两个不等式组的解求并集得到分式不等式的解: 用数轴求两个不等式组的并集,如下图所示:所以:分式不等式的解为:)1,21(∈x 。
【例题二】:解不等式:021322>---xx x 。
【解析】:第一步:分为两种情况进行计算:0322>--x x 或者 0322<--x x 021>-x 021<-x 第二步:解第一个不等式组: (1)、解不等式:0322>--x x :求判别式0416124)3(14)2(22>==+=-⨯⨯--=∆。
解一元二次方程:0322=--x x 得到:11-=x ,32=x 。
二次函数:322--=x x y 的图像,如下图所示:所以:不等式:0322>--x x 的解为:),3()1,(+∞⋃--∞∈x 。
高一数学必修一不等式的解法总结一、不等式的基本概念不等式是数学中一种常见的数值关系表示方法,它用符号<、>、≤、≥等来表示数量的大小关系。
不等式中的未知数可以是实数或者是代数式,不等式的解集是使得不等式成立的所有实数的集合。
二、一元一次不等式的解法1. 移项法:将所有项都移至一个侧边,得到形如ax + b < 0或ax + b > 0的不等式,然后根据a的正负来确定解集的范围。
2. 乘除法:在不改变不等式的方向的前提下,可以对不等式的两侧同时乘以正数或除以正数,但是对于负数,要注意改变不等式的方向。
三、一元二次不等式的解法1. 移项法:将所有项都移至一个侧边,得到形如ax² + bx + c < 0或ax² + bx + c > 0的不等式,然后通过判别式Δ=b²-4ac来确定解集的范围。
a) 当Δ > 0时,不等式有两个实根,解集为两个实根之间的区间。
b) 当Δ = 0时,不等式有一个实根,解集为该实根。
c) 当Δ < 0时,不等式无实根,解集为空集。
四、分式不等式的解法1. 分式的定义域:首先要确定分式的定义域,即分母不能为零,根据分母的正负来确定定义域的范围。
2. 分式的符号:根据分式的分子分母的符号来确定不等式的符号,注意分式的分母不能为零。
3. 分式的解集:根据不等式的符号和定义域的范围,确定不等式的解集。
五、绝对值不等式的解法1. 绝对值的定义:|x|表示x的绝对值,即|x| = x(当x≥0时)或|x| = -x(当x<0时)。
2. 绝对值不等式的性质:当|a| < b时,-b < a < b;当|a| > b时,a > b或a < -b。
3. 绝对值不等式的解集:根据不等式的性质,可以得到不等式的解集。
六、不等式的图像解法1. 不等式的图像:将不等式转化为函数的图像,通过观察图像来确定不等式的解集。
第09讲基本不等式知识点一基本不等式与重要不等式1.算术平均数与几何平均数对于正数a ,b ,我们把a +b2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.2.基本不等式如果a ,b 是正数,那么ab ≤a +b2(当且仅当a =b 时,等号成立).3.两个重要不等式当a ,b ∈R 时,则(1)ab ≤a 2+b 22(当且仅当a =b 时,等号成立);(2)ab 2(当且仅当a =b 时,等号成立).知识点二基本不等式与最值对于正数a ,b ,在运用基本不等式时,应注意:(1)和a +b 为定值时,积ab 有最大值;积ab 为定值时,和a +b 有最小值;(2)a =b 时,ab .1.基本不等式的变形利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.2.应用基本不等式解简单的实际应用题(函数类)(1)合理选择自变量,建立函数关系;(2)寻找利用基本不等式的条件(和或积为定值);(3)解题注意点:①设变量时一般要把求最大值或最小值的变量定义为函数;②根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;③在求函数的最值时,一定要在使实际问题有意义的自变量的取值范围内求解.考点一:利用基本不等式证明不等式例1已知a >b ,b >0,c >0,且a +b +c =1.求证:111111a b c ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥8.【证明】因为a ,b ,c ∈(0,+∞),a +b +c =1,所以1a -1=1-a a =b +c a≥2bc a ,同理1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,分别相乘,得111111a b c ⎛⎫⎛⎫⎛⎫---⎪⎪⎪⎝⎭⎝⎭⎝⎭≥2bc a ·2ac b ·2abc =8.当且仅当a =b =c =13时,等号成立.【总结】变式(1)已知a >b ,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.【证明】因为a >0,b >0,c >0,且a +b +c =1,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫+++⎪⎪⎪⎝⎭⎝⎭⎝⎭≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.(2)已知a >b ,b >0,c >0,且a +b +c =1.求证:111a b c a b c ⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥10.【证明】因为a ,b ,c 都为正实数,=4+b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫+++⎪⎪⎪⎝⎭⎝⎭⎝⎭≥4+2+2+2=10,当且仅当a =b =c =13时取等号.所以111a b c a b c ⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭≥10.考点二:利用基本不等式求最值例2(1)已知x >2,则x +4x -2的最小值为________;(2)若0<x <12,则12x (1-2x )的最大值是________;(3)若x >0,y >0,且x +4y =1,则1x +1y 的最小值为________.【答案】(1)6(2)116(3)9【解析】(1)因为x >2,所以x -2>0,所以x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以12x (1-2x )=14×2x ×(1-2x )≤142=14×14=116,当且仅当2x =1-2x ,即当x =14时,等号成立,所以12x (1-2x )的最大值为116.(3)因为x >0,y >0,x +4y =1,所以1x +1y =x +4y x +x +4y y=5+4y x +xy ≥5+24y x ·xy=9,当且仅当4y x =x y ,即x =13,y =16时取等号.变式求下列函数的最值.(1)已知x >1,求y =4x +1+1x -1的最小值;(2)已知0<x <1,求x (4-3x )的最大值;(3)已知a ,b ∈(0,+∞),且a +2b =1,求2a +1b 的最小值.【解析】(1)∵x >1,∴x -1>0,∴y =4x +1+1x -1=4(x -1)+1x -1+5≥24(x -1)·1x -1+5=9,当且仅当4(x -1)=1x -1即x =32时取等号,∴y =4x +1+1x -1的最小值为9.(2)∵0<x <1,∴x (4-3x )=13·(3x )·(4-3x )≤132=43,当且仅当3x =4-3x ,即x =23时取等号,故x (4-3x )的最大值为43.(3)∵a ,b ∈(0,+∞),且a +2b =1,∴2a +1b (a +2b )=4+4b a +ab ≥4+24b a ·ab=8,当且仅当4b a =a b 且a +2b =1,即b =14,a =12时取等号,故2a +1b的最小值为8.考点三:利用基本不等式求参数的取值范围例3(1)已知函数y =x +ax+2的值构成的集合为(-∞,0]∪[4,+∞),则a 的值是()A .12B .32C .1D .2(2)已知函数y =x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,y ≥3恒成立,则a 的取值范围是________.【答案】(1)C(2)-83,+∞【解析】(1)由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax +2≤-2a +2,当且仅当x =-a 时取等号,-2a =0,2a +2=4,解得a =1.故选C .(2)对任意x ∈N *,y ≥3,即x 2+ax +11x +1≥3恒成立,即a ≥3.设z =x +8x ,x ∈N *,则z =x +8x ≥42,当x =22时等号成立,又x =2时z =6,又x =3时z =173.∴a ≥-83,故a 的取值范围是-83,+]【总结】变式已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________.【答案】2【解析】依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xyx +y≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值为2.又λ≥x +22xyx +y ,因此有λ≥2,即λ的最小值为2.考点四:利用基本不等式解应用题例4某工厂拟建一座平面图为矩形且面积为200m 2的三级污水处理池(平面图如图所示).如果池四周围墙建造单价为400元/m ,中间两道隔墙建造单价为248元/m ,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【解析】设隔墙的长度为x m ,总造价为y 元,则隔墙造价为2x ×248=496x 元,池底造价为200×80=16000元,x +2×400=800元.因此,总造价为y =496x +800200x x ⎛⎫+⎪⎝⎭+16000(0<x <50)=1296x +160000x+16000≥21296x ·160000x +16000=28800+16000=44800.当且仅当1296x =160000x,即x =1009时,等号成立.这时,污水池的长为18m .故当污水池的长为18m ,宽为1009m 时,总造价最低,最低为44800元.【总结】变式某市在建造运动会主体育场时需建造隔热层,并要求隔热层的使用年限为15年.已知每厘米厚的隔热层建造成本是4万元,设每年的能源消耗费用为y 1万元,隔热层的厚度为x 厘米,两者满足关系式:y 1=k 2x +5(0≤x ≤10,k 为常数).若无隔热层,则每年的能源消耗费用为6万元,15年的总维修费用为10万元,记y 2为15年的总费用(总费用=隔热层的建造成本费用+使用15年的能源消耗费用+15年的总维修费用).(1)求y 2的表达式;(2)请问当隔热层的厚度为多少厘米时,15年的总费用y 2最小,并求出最小值.【解析】(1)依题意,当x =0时,y 1=6,∴6=k5,∴k =30.故y 1=302x +5,y 2=4x +302x +5×15+10=4x +4502x +5+10(0≤x ≤10).(2)y 2=4x +4502x +5+10=(4x +10)+4502x +5=2(2x +5)+4502x +5≥22(2x +5)·4502x +5=60,当且仅当2(2x +5)=4502x +5,即x =5时,y 2取得最小值,最小值为60,∴隔热层的厚度为5厘米时,15年的总费用达到最小值,最小值为60万元.1.下列不等式中,正确的是()A.a +4a≥4B .a 2+b 2≥4ab C.ab ≥a +b2D .x 2+3x2≥23【答案】D 【解析】a <0,则a +4a ≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确.2.已知x >0,y >0,x +y =2,则1x +x y +1的最小值为()A.12+536B .13+36C.13+233D .32【答案】C【解析】因为x +y =2,所以y =2-x ,又x >0,y >0,所以0<x <2,1x +x y +1=1x +x 2-x +1=1x +x 3-x =13×3-x x +x 3-x +13,因为0<x <2,所以3-x >0,所以13×3-x x +x 3-x+13≥213×3-x x ×x 3-x+13=233+13,当且仅当13×3-x x=x 3-x ,即x =33-32时取等号,所以1x +x y +1的最小值为233+13.故选C.3.(多选)下列各选项中y 的最大值为12的是()A.y =x 2+116x 2B.y =x 1-x 2,x ∈[0,1]C.y =x 2x 4+1D.y =x +4x +2,x >-2【答案】BC【解析】对于A,y =x 2+116x2≥2x 2·116x 2=12;对于B,y =x 1-x 2=x 2(1-x 2)≤x 2+1-x 22=12;对于C,y =x 2x 4+1=1x 2+1x2≤12;对于D,y =x +4x +2=x +2+4x +2-2≥4-2=2.故选B 、C.4.某公司一年购买某种货物600吨,每次购买x 吨,运费为a 万元/次,一年的总存储费用为6ax 万元,要使一年的总运费与总存储费之和最小,则x 的值是________.【答案】10【解析】设一年的总费用为y ,则y =600x ·a +6ax ≥2600ax·6ax =2×60a =120a ,当且仅当600ax=6ax ,即x =10时等号成立,所以要使一年的总运费与总存储费之和最小,x 的值是10.5.甲、乙两同学分别解“设x ≥1,求函数y =2x 2+1的最小值”的过程如下:甲同学:y =2x 2+1≥22x 2·1=22x ,又x ≥1,所以22x ≥22.从而y ≥22x ≥22,即y 的最小值是22.乙同学:因为y =2x 2+1在x ≥1时的图象随着x 增大而逐渐上升,即y 随x 增大而增大,所以y 的最小值是2×12+1=3.试判断谁错,错在何处?【解析】甲错.甲直接利用基本不等式求最值,忽略了不等式成立的条件.当2x 2+1≥22x 2时,有2x 2=1,此时x 不在范围内,故此题不能用基本不等式求解.乙正确.利用函数图象,由图象判断y 的最小值.6.已知x >0,则9x+x 的最小值为()A .6B .5C .4D .3【答案】A【解析】∵x >0,∴9x +x ≥2x ·9x =6.当且仅当x =9x即x =3时取得最小值6.7.设a ,b 为正数,且a +b ≤4则()A .1a +1b ≤1B .1a +1b ≥2C .ab ≤4D .ab ≥8【答案】C【解析】设a ,b 为正数,且a +b ≥2ab ,∴ab ≤4,当且仅当a =b =2时取等号.8.若a >0,且a +b =0,则a -1b+1的最小值为________.【答案】3【解析】由a +b =0,a >0,得b =-a ,-1b =1a>0,所以a -1b +1=a +1a +1≥3,当且仅当a =1,b =-1时取等号.9.已知ab =1,a >0,b >0.则a +b 的最小值为________.【答案】2【解析】因为a >0,b >0,所以a +b ≥2ab =2.当且仅当a =b =1时等号成立,故a +b 的最小值为2.]10.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是________cm 2.【答案】23【解析】设两段长分别为x cm ,(12-x )cm ,则S =34×+34×=336[x 2+(12-x )2]≥336×(x +12-x )22=23.当且仅当x =12-x ,即x =6时取等号,故两个正三角形面积之和最小值为23cm 2.1.已知P =a 2+4a2(a ≠0),Q =b 2-4b +7(1<b ≤3).则P ,Q 的大小关系为()A.P >Q B .P <Q C.P ≥Q D .P ≤Q【答案】C【解析】P =a 2+4a 2≥2a 2·4a2=4,当且仅当a =±2时等号成立,Q =b 2-4b +7=(b -2)2+3≤4,当b =3时等号成立,所以P ≥Q .故选C.2.已知a >0,b >0,则“ab ≤1”是“2aba +b≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】a >0,b >0,若ab ≤1,则由a +b ≥2ab 得2aba +b ≤2ab 2ab =ab ≤1,充分性成立,若2ab a +b ≤1,例如a =23,b =2,则2ab a +b=1,但ab =43>1,因此必要性不成立.故选A.3.若a >0,b >0,且1a +1b=ab ,则a 2+b 2的最小值为()A.2B .22C.4D .42【答案】C【解析】∵a >0,b >0,∴1a +1b=ab ≥21ab,ab ≥2,当且仅当a =b =2时等号成立,∴a 2+b 2≥2ab ≥4,当且仅当a =b =2时等号成立.综上,a 2+b 2的最小值是4.故选C.4.若对x >0,y >0,有(x +2y )·21x y ⎛⎫+⎪⎝⎭≥m 恒成立,则m 的取值范围是()A.m ≤4B .m >4C.m <0D .m ≤8【答案】D【解析】由x >0,y >0,得(x +2y )21x y ⎛⎫+ ⎪⎝⎭=2+4y x +xy +2≥4+24y x ·xy=8,当且仅当2y =x 时取等号,则m ≤8.故选D.5.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界,若a ,b ∈R+,且a +b =1,则-12a -2b的上确界为()A.92B .-92C.14D .-4【答案】B【解析】由题意可知,只需求-12a -2b 的最大值即可,因此可先求12a +2b 的最小值,12a +2b=12y a b ⎛⎫+ ⎪⎝⎭(a +b )=52+b 2a +2a b ≥92,当且仅当b 2a =2a b ,即a =13,b =23时取等号,所以-12a -2b 的最大值是-92.故选B.6.(多选)设a ,b 是正实数,则下列各式中成立的是()A.a +b ≥2ab B .b a +ab ≥2C.a 2+b 2ab≥2abD .a +b 2≤2aba +b 【答案】ABC 【解析】由a +b2≥ab 得a +b ≥2ab ,当且仅当a =b 时等号成立,∴A 成立;∵b a +ab ≥2b a ·ab=2,当且仅当a =b 时等号成立,∴B 成立;∵a 2+b 2ab≥2abab=2ab ,当且仅当a =b 时等号成立,∴C 成立;∵a +b 2-2ab a +b =(a -b )22(a +b )≥0,∴a +b 2≥2aba +b ,∴D 不成立.故选A 、B 、C.7.(多选)已知a ,b ∈R +且a +b =1,那么下列不等式中,恒成立的有()A.ab <14B .a 2+b 2≥12C.a +b ≤2D .1a +12b≥22【答案】BC【解析】A ,因为a ,b ∈R +且a +b =1,所以ab 2=14+b =1,=b ,即a =b =12时,等号成立,故A 错误;B ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2+12≥12,当且仅当a =b =12时,等号成立,故B 正确;C ,(a +b )2=a +b +2ab =1+2ab =1+2a (1-a )=1+2-a 2+a=1+≤2,当且仅当a =b =12时,等号成立,因此a +b ≤2,故C 正确;D ,1a+12b =a +b a +a +b 2b=32+b a +a 2b ≥32+2b a ·a 2b =32+2=a2b ,b =1,=2-1,=2-2时,等号成立,故D 错误.故选B 、C.8.设a ,b ∈R +,且a ≠b ,a +b =2,则1,ab ,a 2+b 22的大小关系是________.【答案】ab <1<a 2+b 22【解析】因为a ,b ∈R +,a +b =2,所以a +b ≥2ab ,即ab 2=1,又a ≠b ,所以ab <1,因为(a -b )2>0,所以a 2+b 22>ab ,则2(a 2+b 2)>(a +b )2=4,a 2+b 22>1,所以ab <1<a 2+b 22.9.下列条件中能使b a +ab≥2成立的是________.①ab >0;②ab <0;③a >0,b >0;④a <0,b <0.【答案】①③④【解析】要使b a +a b ≥2成立,只需b a >0,a b >0即可,此时b a +ab≥2b a ·a b =2,当且仅当b a =ab等号成立,若ba<0,则不等式不成立,即只需a ,b 同号即可,故①③④满足.10.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形菜园.设菜园的长为x 米,宽为y 米.若菜园面积为50平方米,则所用篱笆总长的最小值为________;若使用的篱笆总长度为30米,则1x+2y的最小值为________.【答案】20310【解析】若菜园面积为50平方米,则xy =50,所以篱笆总长x +2y ≥22xy =20,当且仅当x =2y ,即x =10,y =5时等号成立,故所用篱笆总长的最小值为20;若使用的篱笆总长度为30米,则x +2y =30,所以1x +2y =130×(x +2y)=130+2y x +≥130+=310,当且仅当x =y ,即x =10,y =10时等号成立,所以1x +2y 的最小值为310.11.(1)已知a >0,b >0,a +2b =4,求ab 的最大值;(2)若正数a ,b 满足a +b =1,求9a +1+1b 的最小值.【解析】(1)ab =12a ×2b ≤122=2,当且仅当a =2b =2即a =2,b =1时取等号.故ab 的最大值为2.(2)a +b =1,即(a +1)+b =2,∵a >0,b >0,故9a +1+1b =12[(a +1)+b ]=12+9b a +1+≥8,当且仅当9b a +1=a +1b 时等号成立,又a+b =1,∴a =b =12min=8.12.已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +bc的最小值为()A.2B .2+2C.4D .2+22【答案】D【解析】因为△ABC 的面积为1,内切圆半径也为1,所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b+a +b c =2+2c a +b +a +bc ≥2+22,当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b +a +bc的最小值为2+22.13.(多选)下列说法正确的为()A.若x >0,则x (2-x )最大值为1B.函数y =2(x 2+4)x 2+3的最小值为4C.|x +1x |≥2D.已知a >3时,a +4a -3≥2a ·4a -3,当且仅当a =4a -3即a =4时,a +4a -3取得最小值8【答案】AC【解析】选项A ,若x >0,则x (2-x )≤x +(2-x )22=1,当且仅当x =2-x ,即x =1时等号成立,故选项A 正确;选项B ,y =2(x 2+4)x 2+3=2(x 2+3+1)x 2+3=2(x 2+3+1x 2+3)≥2×2x 2+3·1x 2+3=4,当且仅当x 2+3=1x 2+3,即x 2=-2时等号成立,显然取不到最小值,故选项B 错误;选项C ,当x >0时,|x +1x |=x +1x≥2x ·1x =2,当且仅当x =1x ,即x =1时等号成立;当x <0时,-x >0,所以|x +1x |=(-x )+1-x≥2(-x )·1-x =2,当且仅当-x =1-x,即x =-1时等号成立,所以|x +1x |≥2,故选项C 正确;选项D ,当a >3时,a +4a -3=a -3+4a -3+3≥2(a -3)·4a -3+3=7,当且仅当a -3=4a -3,即a =5时等号成立,故选项D 错误.故选A 、C.14.若正实数a ,b ,c 满足a 2-3ab +4b 2-c =0,则当ab c 取得最大值时,2a +1b -2c的最大值为________.【答案】1【解析】由条件可得c =a 2-3ab +4b 2,则abc =ab a 2-3ab +4b 2=1a b -3+4×ba,由a b -3+4×b a =4×b a +ab -3≥24×b a ×ab-3=1,当且仅当4×b a =a b ,即a =2b 时,ab c 有最大值,此时c =2b 2,所以2a +1b -2c =2b -1b 22+1,当b =1时,2a +1b -2c 有最大值1.所以2a +1b -2c的最大值为1.15.“勾股容方”问题出自我国汉代数学名著《九章算术》,该问题可以被描述为:“设一直角三角形(如图①)的两直角边长分别为a 和b ,求与该直角三角形具有公共直角的内接正方形的边长.”公元263年,数学家刘徽为《九章算术》作注,在注中他利用出入相补原理给出了上述问题如图②和图③所示的解答,则图①中与直角三角形具有公共直角的内接正方形的边长为________,当内接正方形的面积为1时,则图③中两个标有“朱”的三角形和两个标有“青”的三角形的面积总和的最小值为________.【答案】aba +b2【解析】设内接正方形的边长为x ,则图②的面积为ab ,图③的面积为(a +b )x ,因为图②和图③的面积相等,则有ab =(a +b )x ,解得x =ab a +b ,故内接正方形的边长为aba +b.因为内接正方形的面积为1,所以内接正方形的边长x =1,则有a +b =ab ,利用基本不等式可得a +b =ab ≥2ab ,故ab ≥4,当且仅当a =b =2时取等号,所以两个标有“朱”的三角形和两个标有“青”的三角形的面积总和为ab -2≥2,故图③中两个标有“朱”的三角形和两个标有“青”的三角形的面积总和的最小值为2.16.某种产品的两种原料相继提价,产品生产者决定根据这两种原料提价的百分比,对产品分两次提价,现在有三种提价方案:方案甲:第一次提价p %,第二次提价q %;方案乙:第一次提价q %,第二次提价p %;方案丙:第一次提价p +q 2%,第二次提价p +q2%.其中p >q >0,比较上述三种方案,哪一种提价少?哪一种提价多?【解析】不妨设提价前的价格为1,则方案甲:两次提价后的价格为(1+p %)(1+q %)=1+p %+q %+0.01pq %,方案乙:两次提价后的价格为(1+q %)(1+p %)=1+p %+q %+0.01pq %,+p +q2%+p +q 2%=1+p %+q %+0.012%,由于p >q >0,由基本不等式p +q ≥2pq ,当且仅当p =q 时等号成立,2≥pq ,又p ≠q 2>pq .因此方案丙提价最多,方案甲、乙少,且提价一样.17.已知a ,b 为正实数,且1a +1b=22.(1)求a 2+b 2的最小值;(2)若(a -b )2=4(ab )3,求ab 的值.【解析】(1)因为a ,b 为正实数,且1a +1b =22,所以1a +1b =22≥21ab ,即ab ≥12(当且仅当a =b 时等号成立).因为a 2+b 2≥2ab ≥2×12=1(当且仅当a =b 时等号成立),所以a 2+b 2的最小值为1.(2)因为1a +1b=22,所以a +b =22ab .因为(a -b )2=4(ab )3,所以(a +b )2-4ab =4(ab )3,即(22ab )2-4ab =4(ab )3,即(ab )2-2ab +1=0,(ab -1)2=0.因为a ,b 为正实数,所以ab =1.18.某厂家拟在2021年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2021年该产品的利润y (单位:万元)表示为年促销费用m 的函数;(2)该厂家2021年的促销费用为多少万元时,厂家的利润最大?【解析】(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1,又每件产品的销售价格为1.5×8+16xx元,∴y =-(8+16x +m )=4+8x -m=4+-m=-16m +1+(m +1)+29(m ≥0).(2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2021年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。
第08讲不等式的基本性质知识点一不等式(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,含有这些不等号的式子叫作不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b 或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b 或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言大于小于大于或等于小于或等于至多至少不少于不多于><≥≤≤≥≥≤知识点二两个实数的大小比较1.文字叙述(1)当a-b为正数时,称a>b;(2)当a-b为零时,称a=b;(3)当a-b为负数时,称a<b.2.符号表示(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.3.p⇔q的含义提示:p⇔q的含义是p可以推出q,q也可以推出p,即p与q可以互推.知识点三不等式的性质不等式的性质性质1(自反性)a>b⇔b<a性质2(传递性)a>b,b>c⇒a>c性质3(加法保号性)a>b⇔a+c>b+c性质4(乘正保号性、乘a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc负改号性)性质5(同向可加性)a>b,c>d⇒a+c>b+d性质6(全正可乘性)a>b>0,c>d>0⇒ac>bd性质7(拓展)a>b>0⇒a n>b n(n∈N*)考点一:实数比较大小例1(1)已知x <1,比较x 3-1与2x 2-2x 的大小;(2)已知a >0,试比较a 与1a的大小.【解析】(1)(x 3-1)-(2x 2-2x )=(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)21324x ⎡⎤⎛⎫-+⎢ ⎪⎝⎭⎢⎥⎣⎦.∵x <1,∴x -1<0.x -122+34>0,∴(x -1)21324x ⎡⎤⎛⎫-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦<0.即x 3-1<2x 2-2x .(2)∵a -1a =a 2-1a =(a -1)(a +1)a,又∵a >0,∴当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a=0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ;当a =1时,a =1a ;当0<a <1时,a <1a.【总结】1.利用作差法比较大小的四个步骤(1)作差:对要比较大小的两个式子作差;(2)变形:对差式通过通分、因式分解、配方等手段进行变形;(3)判断符号:对变形后的结果结合题设条件判断出差的符号;(4)得出结论.2.作商法比较大小如果两实数同号,亦可采用作商法来比较大小,即作商后看商是大于1,等于1,还是小于1.方法如下:依据a >0,b >0,ab>1⇔a >b ;ab=1⇔a =b ;ab<1⇔a <b a <0,b <0,ab >1⇔a <b ;ab =1⇔a =b ;ab<1⇔a >b 应用范围两同号实数比较大小或分式、积、幂之间比较大小步骤(1)作商;(2)变形;(3)判断商值与1的大小;(4)下结论变式已知a ≥1,试比较M =a +1-a 和N =a -a -1的大小.【解析】(方法1)因为a ≥1,所以M =a +1-a >0,N =a -a -1>0.所以M N =a +1-a a -a -1=a +a -1a +1+a.因为a +1+a >a +a -1>0,所以MN<1,所以M <N .(方法2)因为a ≥1,所以M =a +1-a >0,N =a -a -1>0.又1M =1a +1-a =a +1+a ,1N =1a -a -1=a +a -1,所以1M >1N>0,所以M <N .考点二:不等式的性质例2(1)下列命题中正确的是()A.若0>a >b ,则a 2>b 2B.若a 2>b 2,则a >b >0C.若a >b ,则b a<1 D.若a >b ,则a 3>b 3(2)若c >a >b >0,求证:a c -a >bc -b.(1)【答案】D【解析】对于A ,由0>a >b 可知,0<-a <-b ,则(-b )2>(-a )2,即b 2>a 2,故错误;对于B ,还可能a <b <0,故错误;对于C ,只有当a >0且a >b 时,ba <1才成立,故错误;对于D ,若a >b >0,则a 3>b 3;若a ≥0>b ,则a 3≥0,b 3<0,所以a 3>b 3;若0>a >b ,则-b >-a >0,所以(-b )3>(-a )3,即-a 3<-b 3,所以a 3>b 3.综上,若a >b ,则a 3>b 3,故正确.(2)【解析】证明:因为a >b >0⇒-a <-b ⇒c -a <c -b .因为c >a ,所以c -a >0,所以0<c -a <c -b .上式两边同乘1(c -a )(c -b ),得1c -a >1c -b>0.又因为a >b >0,所以a c -a >bc -b.变式若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2.【解析】证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2.又e <0,∴e (a -c )2>e(b -d )2.考点三:利用不等式的性质解不等式例3解不等式:x -13-x +26>4+3x2,并用不等式的性质说明理由.【解析】去分母,得2(x -1)-(x +2)>3(4+3x ).(性质4)去括号,得2x -2-x -2>12+9x .移项,得2x -x -9x >2+2+12.(性质3)合并同类项,得-8x >16,即8x <-16.系数化为1,得x <-2.(性质4)【总结】变式已知关于x 的方程3(x -2a )+2=x -a +1的解满足不等式2(x -5)≥8a ,求a 的取值范围.【解析】解方程,得x =5a -12.将其代入不等式,得≥8a .去括号,得5a -1-10≥8a .移项,得5a -8a ≥1+10.合并同类项,得-3a ≥11.系数化为1,得a ≤-113.考点四:利用不等式的性质求代数式的取值范围例4已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围.【解析】∵1<a <4,2<b <8,∴2<2a <8,6<3b <24.∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2),即-7<a -b <2.【总结】变式(1)已知1<a <4,2<b <8,试求ab的取值范围.【解析】∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ×1b <4×12,即18<ab<2.(2)已知1≤a +b ≤4,-1≤a -b ≤2,求4a -2b 的取值范围.【解析】(方法1)设u =a +b ,v =a -b 得a =u +v 2,b =u -v2,∴4a -2b =2u +2v -u +v =u +3v .∵1≤u ≤4,-1≤v ≤2,∴-3≤3v ≤6.则-2≤u +3v ≤10,即-2≤4a -2b ≤10.(方法2)令4a -2b =x (a +b )+y (a -b ),∴4a -2b =(x +y )a +(x -y )b .+y =4,-y =-2,=1,=3.≤a +b ≤4,3≤3(a -b )≤6.∴-2≤4a -2b ≤10.1.若abcd <0,且a >0,b >c ,d <0,则()A.b <0,c <0B .b >0,c >0C.b >0,c <0D .0<c <b 或c <b <0【答案】D【解析】由a >0,d <0,且abcd <0,知bc >0,又∵b >c ,∴0<c <b 或c <b <0.2.已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c ),那么P 与Q 的大小关系是()A.P >Q B .P ≥Q C.P <Q D .P ≤Q【答案】A【解析】因为P -Q =a 2+b 2+c 2+3-2(a +b +c )=(a -1)2+(b -1)2+(c -1)2,所以当a ,b ,c 为不全相等的实数时,有P -Q >0,即P >Q .故选A.3.(多选)已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是()A.x +y >y +z B .xz <yz C.xy >xz D .x |y |>z |y |【答案】ABC【解析】因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.>0,>z ,可得xy >xz ,故C 成立;由不等式的性质知A 、B 均成立;当x =1,y =0,z =-1,满足x >y >z ,且x +y +z =0,显然D 不成立.4.若0<x <1,则x ,1x,x ,x 2中最小的是________.【答案】x 2【解析】因为0<x <1,所以1x>1,0<x <1,0<x 2<1.因为x x =x <1,x 2x =x <1,所以x <x ,x 2<x ,即x 2<x <x <1x ,故最小的是x 2.5.已知x >y >0,试比较x 3-2y 3与xy 2-2x 2y 的大小.【解析】由题意,知(x 3-2y 3)-(xy 2-2x 2y )=x 3-xy 2+2x 2y -2y 3=x (x 2-y 2)+2y (x 2-y 2)=(x 2-y 2)·(x +2y )=(x -y )(x +y )(x +2y ),∵x >y >0,∴x -y >0,x +y >0,x +2y >0,∴(x 3-2y 3)-(xy 2-2x 2y )>0,即x 3-2y 3>xy 2-2x 2y .6.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是()A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b 【答案】B【解析】选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .7.设a =3x 2-x +1,b =2x 2+x ,则()A .a >bB .a <bC .a ≥bD .a ≤b【答案】C【解析】a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,∴a ≥b .8.若-1<α<β<1,则α-β的取值范围为________.【答案】(-2,0)【解析】由-1<α<1,-1<β<1,得-1<-β<1.所以-2<α-β<2,但α<β,故知-2<α-β<0.9.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是________.【答案】(-π,2π)【解析】结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).10.已知12<a <60,15<b <36,则a -b 的取值范围为________,ab的取值范围为________.【答案】(-24,45)【解析】∵15<b <36,∴-36<-b <-15,又12<a <60,∴12-36<a -b <60-15,即-24<a -b <45,∵136<1b <115,∴1236<a b <6015,∴13<ab<4.1.下列结论成立的是()A.若ac >bc ,则a >bB.若a >b ,则a 2>b 2C.若a >b ,c <d ,则a +c >b +dD.若a >b ,c >d ,则a -d >b -c【答案】D【解析】对于A ,当c <0时,A 不成立;对于B ,取a =-1,b =-2时,B 不成立;对于C ,a >b ,c <d ,取a =2,b =1,c =3,d =4,则a +c =b +d ,因此C 不成立;对于D ,因为c >d ,所以-d >-c ,又a >b ,所以a -d >b -c ,因此D 成立.故选D.2.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是()A.M <N B .M >N C.M =N D .M ≥N【答案】B【解析】∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N .3.有外表一样,质量不同的四个小球,它们的质量分别是a ,b ,c ,d .已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球的质量由大到小的排列顺序是()A.d >b >a >cB .b >c >d >aC.d >b >c >a D .c >a >d >b【答案】A【解析】因为a +b =c +d ,a +d >b +c ,所以2a >2c ,即a >c ,因此b <d .因为a +c <b ,所以a <b .综上可得d >b >a >c .故选A.4.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0B.-2<α-β<-1C.-1<α-β<0D.-1<α-β<1【答案】A【解析】由-1<α<1,-1<β<1,得-1<-β<1,∴-2<α-β<2.又∵α<β,故知-2<α-β<0.5.同学们在生活中都有过陪同爸爸妈妈去加油站加油的经历,小明发现一个有趣的现象:爸爸和妈妈加油习惯有所不同.爸爸每次加油都说“师傅,给我加300元的油”,而妈妈则说“师傅帮我把油箱加满”,这个时候小明若有所思,如果爸爸、妈妈加油两次,第一次加油汽油单价为x 元/升,第二次加油汽油单价是y 元/升(x ≠y ),妈妈每次加满油箱,需加油a 升,我们规定谁的平均单价低谁就合算,则爸爸、妈妈更合算的是()A.爸爸B .妈妈C.一样D .不确定【答案】A【解析】由题意,妈妈两次加油共需付款a (x +y )元,爸爸两次能加300x +300y =300(x +y )xy升油,设爸爸两次加油的平均单价为M 元/升,妈妈两次加油的平均单价为N 元/升,则M =600300(x +y )xy =2xy x +y ,N =a (x +y )2a =x +y2,且x ≠y ,∴N -M =x +y 2-2xyx +y =(x -y )22(x +y )>0,∴爸爸的加油方式更合算.故选A.6.(多选)若1a <1b<0,则下列结论正确的是()A.a 2<b 2B .ab <b 2C.a +b <0D .|a |+|b |>|a +b |【答案】ABC 【解析】∵1a <1b<0,∴b <a <0,∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.故选A 、B 、C.7.(多选)已知a ,b ,c ,m ∈R ,则下列推证中不正确的是()A.a >b ⇒am 2>bm 2B.a c >bc⇒a >b C.ac 2>bc 2⇒a >b D.a 2>b 2,ab >0⇒1a <1b【答案】ABD【解析】A ,m =0时不成立;B ,c <0时不成立;C ,ac 2>bc 2,两边同除以c 2,可得a >b ,正确;D ,由a 2>b 2,ab >0,取a =-2,b =-1,可得1a >1b,不成立.故选A 、B 、D.8.比较大小:a 2+b 2+c 2________2(a +b +c )-4.【答案】>【解析】a 2+b 2+c 2-[2(a +b +c )-4]=a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0,故a 2+b 2+c 2>2(a +b +c )-4.9.a 2与a -1的大小关系为________.【答案】a 2>a -1【解析】因为a 2-(a -1)=a 2-a +1=(a -12)2+34>0,所以a 2>a -1.10.下列命题中,正确的是________.①若a >b ,c >d ,则ac 2>bd 2;②若a <b ,则3a <3b ;③若a <b <0,则1a >1b ;④若a >b >0,c >d >0,则a c >bd;⑤若a <b <0,c <d <0,则ac <bd .【答案】②③【解析】对①,举反例,取a =2,b =1,c =-1,d =-2,不成立,错误;对②,开三次方根不改变大小关系,正确;对③,是不等式的性质,正确;对④,取a =4,b =3,c =4,d =3,不成立,错误;对⑤,负数越小绝对值越大,应该是ac >bd ,错误.11.解不等式2-x -13<x +12,并用不等式的性质说明理由.【解析】由2-x -13<x +12,两边同乘以6,得12-2(x -1)<3(x +1),(不等式的性质4)即12-2x +2<3x +3,两边同时加2x -3,得11<5x ,(不等式的性质3)即5x >11,(不等式的性质1)两边同乘以15,得x >115,(不等式的性质4)|x .[素养提升练]12.已知实数a ,b ,则“a +ba -b>0”是“|a |>|b |”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】C 【解析】a +ba -b>0⇔(a +b )(a -b )>0⇔a 2-b 2>0⇔a 2>b 2⇔|a |>|b |,为充要条件.故选C.13.(多选)已知a ,b ,c ∈R ,下列命题为真命题的是()A.若a <b <0,则a 2<ab <b 2B.若a >b ,则ac 2≥bc 2C.若ac 2>bc 2,则a >bD.若b <a <0,则1a <1b【答案】BCD【解析】对于A ,当a <b <0时,a 2-ab =a (a -b )>0,∴a 2>ab ,A 错误;对于B ,若a >b ,当c =0时,则ac 2=bc 2,若c ≠0,则c 2>0,则有ac 2>bc 2,B 正确;对于C ,若ac 2>bc 2,则c 2≠0,∴a >b ,C 正确;对于D ,当0>a >b 时,1a -1b =b -a ab <0,∴1a <1b ,D 正确.故选B 、C 、D.14.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________.【答案】[3,8]【解析】∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是3≤z ≤8.15.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 4>b 4;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.【答案】②③【解析】①当c 2=0时不成立;②因为a >|b |≥0,所以a 2>|b |2,即a 2>b 2,所以a 4>b 4,所以正确;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b +34b 2>0,成立;④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.16.已知-1<x <y <0,比较1x ,1y,x 2,y 2的大小关系.【解析】因为-1<x <y <0,根据实数的性质,可得x 2>0,y 2>0,1x <0,1y <0,由x 2-y 2=(x +y )(x -y ),且1x -1y =y -x xy,又由-1<x <y <0,可得x +y <0,x -y <0,xy >0,所以(x +y )(x -y )>0,且y -x xy>0,即x 2>y 2>0且0>1x >1y ,所以x 2>y 2>1x >1y .17.已知三个不等式:①ab >0;②c a >d b;③bc >ad .若以其中两个作为条件,余下的一个作为结论,请写出一个真命题,并写出推理过程.【解析】(1)①②⇒③,即若ab >0且c a >d b ,则bc >ad .因为c a >d b 且ab >0,所以c a ·ab >d b·ab ⇒bc >ad ,则命题成立.(2)①③⇒②,即若ab >0且bc >ad ,则c a >d b.因为ab >0,所以1ab >0,又因为bc >ad ,所以bc ·1ab >ad ·1ab ⇒c a >d b,则命题成立.18.下列关于糖水浓度的问题,能提炼出怎样的不等关系呢?(1)如果向一杯糖水里加糖,糖水变甜了;(2)把原来的糖水(淡)与加糖后的糖水(浓)混合到一起,得到的糖水一定比淡的浓、比浓的淡;(3)如果向一杯糖水里加水,糖水变淡了.【解析】(1)设糖水b 克,含糖a 克,糖水浓度为a b ,加入m 克糖,即证明不等式a +m b +m >a b (其中a ,b ,m 为正实数,且b >a )成立.不妨用作差比较法,证明如下:a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ).∵a ,b ,m 为正实数,且a <b ,∴b +m >0,b -a >0,∴m (b -a )b (b +m )>0,即a +m b +m>a b .(2)设原糖水b 克,含糖a 克,糖水浓度为a b ;另一份糖水d 克,含糖c 克,糖水浓度为c d ,且a b <c d ,求证:a b <a +c b +d<c d (其中b >a >0,d >c >0).证明:∵a b <c d,且b >a >0,d >c >0,∴ad <bc ,即bc -ad >0,a b -a +c b +d =ab +ad -ab -bc b (b +d )=ad -bc b (b +d )<0,即a b <a +c b +d,c d -a +c b +d =cb +cd -ad -cd d (b +d )=cb -ad d (b +d )>0,即a +c b +d <c d .∴a b <a +c b +d<c d .(3)设原糖水b 克,含糖a 克,糖水浓度为a b ,加入m 克水,求证a b >a b +m (其中b >a >0,m >0).证明:a b -a b +m =ab +am -ab b (b +m )=am b (b +m )>0,∴a b >a b +m .。
典型例题一例1 解不等式:〔1〕015223>--x x x ;〔2〕0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f 〔或0)(<x f 〕可用“穿根法〞求解,但要注意处理好有重根的情况.解:〔1〕原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 〔2〕原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法〞解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法〞,但注意“奇穿偶不穿〞,其法如下图.典型例题二例2 解下列分式不等式:〔1〕22123+-≤-x x ; 〔2〕12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或〔1〕解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法〞∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
典型例题一例1 假如10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x , 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时, 因为 11,110>+<-<x x 所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比拟法.因为 )1(log )1(log x x a a +--a x a x lg )1lg(lg )1lg(+--=[])1lg()1lg(lg 1x x a+--=[])1lg()1lg(lg 1x x a+---=0)1lg(lg 12>--=x a, 所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.abba b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.证明:b a a b ba ab b a b a b aba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>abb a , ∴.abba b a b a >.说明:此题考查不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假如使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。