结构自振周期计算公式
- 格式:docx
- 大小:10.41 KB
- 文档页数:1
简支梁的周期计算简支梁是一种较为常见的结构形式,其两个端点可以完全自由地旋转,不受约束。
这种结构梁比较简单,可以用一维振动理论来描述和计算。
简支梁的自由振动方程可以表示为:m* d²u/dt² + k* u = 0其中,m是梁的质量,k是梁的刚度,u是梁的挠度,t是时间。
这是一个二阶线性常微分方程,可以通过解特征方程来得到解析解。
由于此处要求大于1200字,我将分几个方面来详细讲解简支梁的周期计算。
1.导出简支梁的振动方程2.计算简支梁的自然频率3.计算简支梁的周期首先,我们可以从简支梁的振动方程出发,推导得到简支梁的自然频率。
自然频率是梁在自由振动时的频率,是梁固有的特性。
可以用公式表示为:ω=√(k/m)其中,ω是自然频率,k是梁的刚度,m是梁的质量。
接下来,我们可以用自然频率来计算简支梁的周期。
周期是一个完整振动周期所需的时间,可以用公式表示为:T=2π/ω其中,T是周期,ω是自然频率。
对于简支梁,刚度k和质量m可以通过结构的几何形状和材料性质来确定。
例如,对于均匀截面的简支梁,可以用梁的截面面积A、杨氏模量E和长度L来计算刚度k和质量m。
刚度k可以通过以下公式计算:k=3EI/L³其中,E是杨氏模量,I是梁截面的惯性矩,L是梁的长度。
质量m可以通过以下公式计算:m=ρAL其中,ρ是梁的密度,A是梁的截面面积,L是梁的长度。
通过上述方法,我们可以计算出简支梁的自然频率ω和周期T。
需要注意的是,上述计算方法适用于假设简支梁是线性弹性结构的情况。
对于非线性情况,计算方法会有所不同。
此外,简支梁的几何形状和材料特性也会对周期的计算结果产生影响。
在实际工程中,为了保证结构的安全性和可靠性,设计时通常会将简支梁的自然频率控制在一定范围内。
频率过高或过低都可能导致结构出现问题,例如共振或不够刚性。
综上所述,简支梁的周期计算是工程设计中的重要问题。
通过推导梁的振动方程,计算自然频率和周期,可以帮助工程师合理地确定梁的材料和几何形状参数,确保结构的安全性和可靠性。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
自振周期是结构按某一振型完成一次自由振动所需的时
计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结
周期相等或接近时,建筑物的震害较为严重。
基本周期应该取决于建筑物的结构形式,各种结构形式都是定数。
结构自振周期是结构在水平作用下的震动周期,是变数。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:
框架结构 T=()N
框剪结构、框筒结构 T=()N
剪力墙结构、筒中筒结构 T=()N
其中N为结构层数。
也可采用结构分析得到的结构第1平动周期。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
结构基本周期:是指结构按基本振型完成一次自由振动所需的时间。
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
设计特征周期:是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期:是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
剪切波速是指震动横波在土内的传播速度,单位是m/s。
可通过人为激震的方法产生震动波,在相隔一定距离处记录振动信号到达时间,以确定横波在土内的传播速度。
测试方法一般有单孔法、跨孔法等。
剪切波速是抗震区确定场地土类别的主要依据。
地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
1. 结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
2.经验公式一般情况下,高层钢筋混凝土结构的基本自振周期T1为T1=(0.05~1.10)n(4.3-27)其中:钢筋混凝土框架结构:T1=(0.06~0.09)n(4.3-28)框架-剪力墙结构:T1=(0.06~0.08)n(4.3-29)高层钢结构的基本自振周期T1为T1=(0.10~0.15)n(4.3-30)式中:n——建筑层数。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
用顶点位移法求自振周期:T=1.7*周期折减系数*(层间侧移开方)折减系数:框架结构取0.6~0.7框剪结构取0.7~0.8抗剪墙取1.0按照行业标准《工程抗震术语标准》(JGJ/97)的有关条文,自振周期:结构按某一振型完成一次自由振动所需的时间。
3.5.3 结构自振周期的近似计算通过结构的频率方程求自振周期比较复杂,这里介绍几种近似计算方法。
动能为势能为由能量守恒,有例.已知:解:3.6 竖向地震作用《规范》规定:设防烈度为8度和9度区的大跨度屋盖结构、长悬臂结构、烟囱及类似高耸结构和9度区的高层建筑,应考虑竖向地震作用。
效应:使建筑物上下颠簸F F3.7 结构平扭耦合地震反应与双向水平地震影响 规范规定:对于质量及刚度明显不均匀、不对称的结构,应考虑水平地震作m用的扭转影响。
刚心)(tug质心分析过程:[受弯钢筋凝土构件的滞回曲线滞回模型:描述结构或构件滞回关系的数学模型。
双线性模型双线性模型一般适用于钢结构梁、柱、节点域构件。
钢筋混凝土梁、柱、墙等一般采用退化三线性模型。
退化三线性模型结构非弹性地震反应分析的简化方法适用范围:不超过12层且层刚度无突变的钢筋混凝土框架结构和填充墙钢筋混凝土框架结构;不超过20层且层刚度无突变的钢框架结构和支撑钢框架结构;式中:N N a h +−5.0)(/---系数,混凝土强度等级不超过C50时,取1.0,C80时为0.94,by二、结构薄弱层位置判别结构薄弱层:塑性变形集中的楼层,即ζy 最小或相对较小的楼层对于ζy 沿高度分布均匀的框架结构,底层作为薄弱层。
3.9 结构抗震验算3.9.1 结构抗震计算方法原则(1 ) 一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用,并进行抗震验算各方向的水平地震作用应由该方向抗侧力构件承担。
(2 )有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
(3) 质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响,其他情况,应允许采用调整地震作用效应的方法计入扭转影响。
(4) 不同方向的抗侧力结构的共同构件(如框架角柱),应考虑双向水平地震作用的影响。
(5)8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。
附录F 结构基本自振周期的经验公式F.1 高耸结构F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值:H T )013.0~007.0(1= (F.1.1)式中:H ——结构的高度(m)。
F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用:1,烟囱的基本自振周期可按下列规定计算:1)高度不超过60m 的砖烟囱的基本自振周期按下式计算:dH T 2211022.023.0-⨯+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算:dH T 2211010.041.0-⨯+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算:dH T 2211008.053.0-⨯+= (F.1.2-3) 式中:H ——烟囱高度(m);d ——烟囱1/2高度处的外径(m)。
2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算:图F.1.2 设备塔架的基础形式(a)圆柱基础塔;(b)圆筒基础塔;(c)方形(板式)框架基础塔;(d)环形框架基础塔1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时2311085.035.0D H T -⨯+= (F.1.2-4)当H 2/D 0≥700时2311099.025.0D H T -⨯+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m);D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。
2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算:2311040.056.0D H T -⨯+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。
4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。