特征周期
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
等效剪切波速、覆盖层厚度、确定场地类别和特征周期。
计算场地等效剪切波速 式中:vse -土层等效剪切波速(m/s);
d0-计算深度(m),取覆盖层厚度和20m 二者的较小值;
t -剪切波在地面至计算深度之间的传播时间(s);
di -计算深度范围内第i 土层的厚度(m);
vsi -计算深度范围内第i 土层的剪切波速(m/s);
n -计算深度范围内土层的分层数。
特征周期是根据覆盖层厚度H 和土层剪切波速Vs 按公式T =4H/Vs 计算的周期
例:两个建筑场地在特征周期第2分区,土层波速测试成果如下表所示,试判定各土层的场地土类型、确定场地的覆盖层厚度、计算深度、等效剪切波速、场地类别、场地特征周期
影响砂土液化的因素主要有:土的类型和性质,包括:土颗粒粒径(以平均粒径d50表示)、密实度、土的成因和堆积年代;液化土体的埋藏条件,包括:上覆不透水土层厚度、地下水的埋藏深度;地震动的强度和历时。
崩塌和滑坡的区别: ①运动方式 ②破坏形式 ③地形条件 ④是否脱离母体,存在滑动面 ⑤规模、速度
泥石流的形成条件:地形(有陡峻便于集物、集水的适当地形)、地质(上游堆积有丰富的松散固体物质)和水文气象条件(短期内有突然性大量水的来源)
标贯与圆锥动力触探的区别主要是:(1)探头不同;可取扰动样;(2)标贯是连续贯入,分段计锤击数
岩石质量指标(RQD )分类:用直径为75mm 的金钢石钻头和双层岩芯管在岩石中钻进,连续取芯,回次钻进所取岩芯中,长度大于10cm 的岩芯段长度之和与该回次进尺的比值,以百分数表示。
目力鉴别方法对土的描述等级
t d v se /0=∑==n
i si i v d t 1)/(。
场地卓越周期和特征周期是两个不同的概念它们的区别在于:1)研究途径不同.卓越周期是通过场地地震动记录的分析得到,而特征周期是通过场地地面运动反应谱的分析得到.2)研究意义或用途不尽相同.除了可用于土层动力反应分析的研究外,场地卓越周期还可以防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;对某一特定场址,特征周期可以根据实测强震记录计算,并综合场地安全性评价的结果确定该场址的设计特征周期用于抗震设计.3)两者在取值上的差异.从取值大小上考虑,场地特征周期一般大于卓越周期;从取值特点上考虑,某一特定场地可以存在2个或多个地震动卓越周期[ ,而其特征周期只有1个,是反应谱的下降段的起始周期;此外,两者的取值不具有可比性,前者研究的是地面运动的频度较大的周期,后者研究的是在场地运动各频率激励的综合作用下结构的反应中满足某一特征关系的周期,因此,卓越周期大的场地,并不意味着其特征周期~定大,反之,也并不意味着特征周期就小.4)场地卓越周期更多的是场地地震动特性的客观反映,即它是地震动记录上客观的存在1个或多个特别卓越的周期;而特征周期更多的体现了人们的主观性,即在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,对其规定相应的计算公式,并根据此公式在反应谱上确定特征周期,供抗震设计使用.卓越周期是指随机振动过程中出现概率最多的周期,常用以描述地震动或场地特性。
地震波在土层中传播,由于土层的过滤特性与选择放大作用(过滤与放大通过不同性质界面的多次反射来实现),周期与场地土固有周期接近的地震波得到增强(通过共振作用放大),此周期称为场地(地震动)卓越周期。
设计特征周期也可称为设计反应谱特征周期,是指地震影响系数曲线下降段起始点对应的周期值,与地震震级、震中距和场地类别等因素有关,规范通过设计地震分组和场地类别反映,场地越软,震级、震中距越大,值越大。
选取同一类场地、震中距相近的20条地震动记录,地震动峰值均为0.7m/s2,单自由度结构的阻尼比为2%、5%、10%和15%,周期范围为0.1s~10s,计算位移反应谱、速度反应谱和伪速度反应谱、加速度反应谱和伪加速度反应谱,并分析比较速度反应谱和伪速度反应谱的区别,以及加速度反应谱和伪加速度反应谱的区别。
一.反应谱计算与绘图反应谱的计算采用Newmark-β法计算,对于单自由度体系使用杜哈美积分来求解实际更为方便。
MATLAB的计算程序如下所示:clcclearkesai=0.15; %阻尼比m=1;[acc,dt,N]=peer2acc('F:matlab-learn','RSN3753_LANDERS_FVR135.AT2')%peer2acc为处理原始地震动数据的程序save('acc2','acc')load('acc2.mat');gama = 0.5;beta = 0.25;alpha0 = 1/beta/dt^2;alpha1 = gama/beta/dt;alpha2 = 1/beta/dt;alpha3 = 1/2/beta - 1;alpha4 = gama/beta - 1;alpha5 = dt/2*(gama/beta-2);alpha6 = dt*(1-gama);alpha7 = gama*dt;peak=9.8*max(abs(acc));acc=acc*0.7/peak;n=length(acc);p=-m*9.8*acc;j=0;for T=0.1:0.01:10j=j+1;wn=2*pi/T;k=m*wn^2;c=kesai*2*m*wn;Keq=k+ alpha0*m + alpha1*c;wD=wn*(1-kesai^2)^0.5;d=zeros(n,1);v=zeros(n,1);a=zeros(n,1);for i=2:nt=0.002*(i-1);f=p(i) + m*(alpha0*d(i-1)+alpha2*v(i-1)+alpha3*a(i-1))+c*(alpha1*d(i-1)+alpha4*v(i-1)+alpha5*a(i-1)); d(i) =f/Keq; %Newmark-β的计算程序a(i) = alpha0*(d(i)-d(i-1))-alpha2*v(i-1)-alpha3*a(i-1);v(i) = v(i-1) + alpha6*a(i-1) + alpha7*a(i);endsd(j)=max(abs(d)); %位移反应谱sv(j)=max(abs(v)); %速度反应谱sa(j)=max(abs(a)); %加速度反应谱SA(j)=wn^2*sd(j); %伪加速度反应谱SV(j)=wn*sd(j); %伪速度反应谱end选取的地震动记录如图地震动记录一般在PEER网站下载。
自振周期与特征周期默认分类2010-01-24 20:59:28 阅读583 评论1 字号:大中小订阅自振周期:是结构本身的动力特性。
与结构的高度H,宽度B有关。
当自振周期与地震作用的周期接近时,共振发生,对建筑造成很大影响,加大震害。
特征周期:是建筑场地自身的周期,抗震规范中是通过地震分组和地震烈度查表确定的。
结构的自振周期顾名思义是反映结构的动力特性,与结构的质量及刚度有关,具体对单自由度就只有一个周期,而对于多自由度就有同模型中采用的自由度相同的周期个数,周期最大的为基本周期,设计用的主要参考数据!而特征周期是,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别,所以我认为特征周期同时反映了地震动及场地的特性!它在确定地震影响曲线时用到!1.特征周期:是建筑物场地的地震动参数——由场地的地质条件决定;2.自振周期有结构子身的结构特点决定——用结构力学方法求解;(主要指第一振型的主振周期)3.结构的自振周期主要是避免与场地的卓越周期重合产生共振;4.卓越周期与特征周期有关;卓越周期由场地的覆盖土层厚度和土层剪切波速计算求解(见工程地质手册)。
设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.-----根据其所在地的设计地震分组和场地类别确定.详见抗震规范.自振周期:是结构本身的动力特性.与结构的H,B有关.当自振周期与地震作用的1/f接近时,共振发生,对建筑造成很大影响.另外:目前就场地的有关周期,经常出现场地脉动(卓越)周期,地震动卓越周期和反应谱特征周期等名词。
就以上3个周期概念来说,其确切的含义是清楚的,场地脉动周期是在微小震动下场地出现的周期,也可以说是微震时的卓越周期;地震动卓越周期是在受到地震作用下场地出现的周期,一般情况下它大于脉动周期(一般1.2~2.0)。
插入法确定设计特征周期Tg计算书
依据《建筑抗震设计规范》GB 50011-2010第4.1.6条及条文说明、《建筑与市政工程抗震通用规范》GB 55002-20210第3.1.3条及条文说明、勘察公司提供的《片区详细岩土工程勘察报告》插入法确定设计特征周期。
1、本项目根据选取勘察钻孔ZK1、ZK17、ZK26、ZK32四个钻孔进行剪切波速试验,据《波速测试报告》,勘察钻孔ZK1、ZK17、ZK26、ZK32四个钻孔的等效剪切波速Vse分布为195.28、212.75、228.03、200.06m/s,平均等效剪切波速为225.53m/s,按《建筑抗震设计规范》(GB50011—2010 2016年版)表4.1.3划分,属中软场地土。
据本次勘察钻孔揭露,工程场地覆盖层厚度3m<dov<50m,按《建筑抗震设计规范》(GB50011—2010 2016年版)第4.1.6条划分,工程场地属Ⅱ类建筑场地。
2、平均等效剪切波速225.53m/s大于250*0.85=212.5m/s,在500≥Vse≤250m/s的-15%范围;查验《波速测试报告》dov=3~50m存在大于50*0.85=42.5m,存在-15%范围,采用插值计算,Tg=0.4s。
3、平均等效剪切波速225.53m/s大于150*1.15=172.5m/s,不在Vse≤150m/s的15%范围,可以不用进行插值计算。
4、综上,进行插入法确定设计特征周期,Tg=0.4s。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
结构基本周期:是指结构按基本振型完成一次自由振动所需的时间。
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
设计特征周期:是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期:是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
剪切波速是指震动横波在土内的传播速度,单位是m/s。
可通过人为激震的方法产生震动波,在相隔一定距离处记录振动信号到达时间,以确定横波在土内的传播速度。
测试方法一般有单孔法、跨孔法等。
剪切波速是抗震区确定场地土类别的主要依据。
地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
抗震设计中特征周期值的选取方法抗震设计是建筑结构设计中的重要部分,其目的是为了确保建筑在地震时能够承受地震力的作用,减少地震对建筑物和人员的危害。
在抗震设计中,特征周期值的选取是一个重要的参数,它直接关系到建筑结构的抗震能力。
特征周期是指建筑结构在地震作用下发生振动的周期。
对于具体的建筑结构,特征周期的选取需要综合考虑地震活动特点、结构的刚度、阻尼特性以及结构的动力性能等因素。
下面介绍几种常用的特征周期值选取方法。
1.公式法公式法通过一定的公式来计算特征周期值,常用的公式有刚度比法、质量比法和动力放大系数法等。
刚度比法通过结构的刚度与基础剪力刚度之比来确定特征周期值;质量比法则通过结构的质量与基础剪力质量之比来确定特征周期值;动力放大系数法通过结构的初始刚度和周期参数的乘积来确定特征周期值。
这些公式通常需要进行参数的修正和校准,以适应不同类型的结构和地震条件。
2.静力法静力法是指通过对结构在静力假设下的反应进行分析,得到结构的位移-抵抗力曲线,从而确定特征周期值。
静力法的优点是计算简单,适用范围广,适合处理简单结构。
但是静力法忽略了结构的动力特性,相对于动力法来说,精度较低。
3.动力法动力法是一种通过对结构在地震作用下的动力响应进行分析,得到结构的动力性能指标,从而确定特征周期值的方法。
动力法可以使用频率分析法、时程分析法和模态叠加法等多种方法。
频率分析法通过计算结构的振型频率和模态质量来确定特征周期值;时程分析法通过分析结构在地震荷载下的时间历程曲线,得到结构的加速度、速度和位移等响应,从而确定特征周期值;模态叠加法则是将结构的振态通过线性叠加的方法得到结构的总响应,从而确定特征周期值。
动力法在对结构的抗震性能进行评估时,具有较高的精度和较为准确的结果。
综上所述,选取特征周期值的方法有很多种,每种方法都有其各自的优缺点。
在实际抗震设计中,需要综合考虑各种因素,并根据具体的结构类型和地震条件灵活选择适合的方法来确定特征周期值,以保证设计结果的准确性和实用性。
特征周期、卓越周期、地震波选波
①结构自振周期---结构按某一振型完成一次自由振动所需的时间。
(可通过模态分析获得)
②结构基本周期--结构按基本振型(第一振型)完成一次自由振动所需的时间。
(可通过模态
分析获得)
③设计特征周期或特征周期--由场地类别和地震分组决定,地震影响系数曲线中下降段起始
点对应的周期值。
(查表可得)
④场地卓越周期--根据覆盖层厚度H和土层剪切波速vs按公式T0=4H/vs计算的周期,表
示场地土最主要的振动特性。
(可直接测得)
(很接受[学无止境]的解释:场地卓越周期是指场地的基本周期,因为场地也可以看作一种结构,因此场地也有一系列自振周期,其中基本周期被称作卓越周期,卓越周期的数值为地震波穿越场地厚度时所用时间的4倍。
地震波中与卓越周期相近或相等的谐波分量将被放
大很多。
)。