结构自振周期
- 格式:docx
- 大小:78.37 KB
- 文档页数:6
1、《高层规程》3.2.6规定-----结构基本自振周期大致为:框架结构T1=(0.08~0.10)n, 框—剪和框—筒结构T1=(0.06~0.08)n 剪力墙和筒中筒结构T1=(0.05~0.06)n2、周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt 与平动为主的第一自振周期(也称第一侧振周期)T1的比值。
周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。
因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。
2.2 相关规范条文的控制:[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。
[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。
2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。
因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。
一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。
当然,对某些极为复杂的结构还应结合主振型信息来进行判断;b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;c)计算Tt / T1,看是否超过0.9(0.85)。
对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。
predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
[笔记]结构自振周期是结构自由振动的周期predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
场地卓越周期Ts:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。
这一被加强的地震波的周期称为该场地土的卓越周期。
场地卓越周期只反映场地的固有特征,不等同于设计特征周期。
其由场地的覆盖土层厚度和土层剪切波速计算求的。
场地脉动周期Tm:应用微震对场地的脉动、又称为“常时微动”进行观测所得到的振动周期。
测试应在环境十分安静的情况下进行,场地的震动类似人体的脉搏,所以称为“脉动”。
场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关联,又不完全相同。
3.5.3 结构自振周期的近似计算通过结构的频率方程求自振周期比较复杂,这里介绍几种近似计算方法。
动能为势能为由能量守恒,有例.已知:解:3.6 竖向地震作用《规范》规定:设防烈度为8度和9度区的大跨度屋盖结构、长悬臂结构、烟囱及类似高耸结构和9度区的高层建筑,应考虑竖向地震作用。
效应:使建筑物上下颠簸F F3.7 结构平扭耦合地震反应与双向水平地震影响 规范规定:对于质量及刚度明显不均匀、不对称的结构,应考虑水平地震作m用的扭转影响。
刚心)(tug质心分析过程:[受弯钢筋凝土构件的滞回曲线滞回模型:描述结构或构件滞回关系的数学模型。
双线性模型双线性模型一般适用于钢结构梁、柱、节点域构件。
钢筋混凝土梁、柱、墙等一般采用退化三线性模型。
退化三线性模型结构非弹性地震反应分析的简化方法适用范围:不超过12层且层刚度无突变的钢筋混凝土框架结构和填充墙钢筋混凝土框架结构;不超过20层且层刚度无突变的钢框架结构和支撑钢框架结构;式中:N N a h +−5.0)(/---系数,混凝土强度等级不超过C50时,取1.0,C80时为0.94,by二、结构薄弱层位置判别结构薄弱层:塑性变形集中的楼层,即ζy 最小或相对较小的楼层对于ζy 沿高度分布均匀的框架结构,底层作为薄弱层。
3.9 结构抗震验算3.9.1 结构抗震计算方法原则(1 ) 一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用,并进行抗震验算各方向的水平地震作用应由该方向抗侧力构件承担。
(2 )有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
(3) 质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响,其他情况,应允许采用调整地震作用效应的方法计入扭转影响。
(4) 不同方向的抗侧力结构的共同构件(如框架角柱),应考虑双向水平地震作用的影响。
(5)8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
结构基本周期:是指结构按基本振型完成一次自由振动所需的时间。
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
设计特征周期:是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期:是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
剪切波速是指震动横波在土内的传播速度,单位是m/s。
可通过人为激震的方法产生震动波,在相隔一定距离处记录振动信号到达时间,以确定横波在土内的传播速度。
测试方法一般有单孔法、跨孔法等。
剪切波速是抗震区确定场地土类别的主要依据。
地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下:
一、场地土类别
《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的
场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。
当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。
《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。
相关概念:
场地--工程群体所在地,具有相似的反应谱特征。
其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。
与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。
历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。
规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。
具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。
对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。
另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。
二、结构自振周期
概念:
结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。
应用:
结构越柔,自振周期越长,结构在地震作用下的加速度反应越小,即地震影响影响系数α越小,结构所受到的地震作用就越小。
而采用柔性结构方案的建筑,由于地震时产生较大的层间位移,主体结构破坏严重。
规范规定:
进行结构分析计算时,扭转耦联震动的方向,可通过振型的方向的因子来判断。
为了限制结构的抗扭刚度不能太弱,高层结构规范规定了结构扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、超过A级高度的混合结构及《高规》第10章所指的复杂高层建筑不应大于0.85。
工程如两个方向的第一振型周期与Tt的比值均能满足限值要求,其抗扭刚度更为理想。
高层建筑结构整体计算分析时,没有考虑非承重结构构件的刚度,计算的自振周期较实际的偏长,按这一周期计算的地震力偏小。
《高规》第4.3.16条,计算各振型地震影响系数所采用的结构自振周期应考虑非承重墙体的刚度影响予以折减。
当非承重墙体为砌体墙时,高层建筑结构的计算自振周期折减系数可按下列规定取值:
1 框架结构可取0.6~0.7;
2 框架-剪力墙结构可取0.7~0.8;
3 框架-核心筒结构可取0.8~0.9;
4 剪力墙结构可取0.8~1.0。
对于其他结构体系或采用其他非承重墙体时,可根据工程情况确定周期折减系数。
相关概念:
基本周期是第一振型对应的周期,通常需要考虑两个主轴方向和扭转方向的基本周期。
三、设计特征周期:
设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值。
“设计特征周期”即设计所用的地震影响系数的特征周期(Tg),简称特征周期。
特征周期应根据场地类别和设计地震分组按《抗规》表5.1.4—2采用,计算罕遇地震作用时,特征周期应增加0.05s。
注:周期大于6.0s的建筑结构所采用的地震影响系数应专门研究。
场地越软,震级、震中距越大,特征周期值越大。
四、相互关系
1、场地土类别与设计特征周期:
场地土类别是静态特性,特征周期是动态特性,主要周期随场地土类别、震中距远近而变化;硬土的特征周期短;软土的特征周期长。
2、自振周期和设计特征周期:
,根据某次地震时的地面加速记录,当结构自振周期T小于某一数值Tg时,结构的动力放大系数将随T的增加急剧上升;当T= Tg 时,动力系数达到最大值;当T>Tg时,动力系数波动下降。
当结构自振周期与设计特征周期相等或相近时,地震反应最大。
五、结论建议:
在抗震设计中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg 越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
1、软弱场地对地震力有放大作用,设计时应趋利避害,充分考虑不利场地对建筑结构的影响。
2、结构设计时,计算的自振周期较实际的偏长,按这一周期计算的地震力偏小,应根据结构类型按规范要求进行相应折减,从而更准确的考虑地震力的作用。
3、当结构自振周期与设计特征周期相等或相近时,地震反应最大。
在结构抗震设计中,应使结构的自振周期远离设计特征周期,以避免发生共振现象。