高二数学流程图
- 格式:ppt
- 大小:198.00 KB
- 文档页数:21
流程图三维目标1.知识与技能(1)通过具体实例,进一步认识程序框图.(2)通过具体实例,了解工序流程图.2.过程与方法能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.3.情感、态度与价值观在使用流程图过程中,发展学生条理性思考,提高学生表达能力和逻辑思维能力.重点难点重点:学会绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.难点:绘制简单实际问题的流程图.课堂探究课堂探究一流程图【问题导思】1.展示算法步骤的直观图示称为流程图,除此之外,流程图是否还有其他形式?【提示】有,由一些图形符号和文字说明构成的图示都称为流程图.2.你能举出几个流程图的实例吗?【提示】实验室工作流程图,阅览室阅读流程图等.由一些图形符号和文字说明构成的图示称为流程图,流程图常常用来表示一些动态过程,通常会有一个“起点”,一个或多个“终点”.例1有三个整数a,b,c,由键盘输入,输出其中最大的数,画出其算法流程图.【思路探究】写出算法→画出流程图【自主解答】算法如下:第一步:输入a,b,c;第二步:若a>b且a>c,则输出a,否则,执行第三步;第三步:若b>c,输出b,否则,执行第四步;第四步:输出c.根据以上步骤可以画出如图所示的算法流程图.方法总结1.程序框图是一种用规定的图形、指向线及文字说明来准确表示算法的图形,能清楚地展现算法的逻辑结构,具有直观、形象的特点.2.程序框图要基于它的算法,在对一个算法作了透彻分析的基础上再设计流程图,在设计流程图的时候要分步进行,把一个大的流程图分解成若干个小的部分,按照顺序结构、条件结构、循环结构来局部安排,最后再把各部分之间进行组装,从而完成完整的程序框图.变式训练把“三个整数a,b,c”改为“两个整数a,b”,其他不变,试画出算法流程图.【解析】算法流程图如图:课堂探究二工序流程图例2在工业中由黄铁矿制取硫酸大致经过三个程序:造气、接触氧化和SO3的吸收.造气即黄铁矿与空气在沸腾炉中反应产生SO2和矿渣,矿渣作废物处理,SO2再经过净化处理;接触氧化是SO2在接触室中反应产生SO3和SO2,其中SO2再循环接触反应;吸收阶段是SO3在吸收塔内反应产生硫酸和废气.请据上述简介,画出制备硫酸的流程图.【思路探究】划分工序→明确工序之间的关系→画工序流程图【自主解答】按照工序要求,可以画出下面工序流程图:方法总结画工序流程图的步骤:(1)从需要管理的任务的总进度着眼,进行合理的工作或工序的划分.(2)明确各工作或工序之间的关系.即①衔接关系,各工作或各工序之间的先后顺序.②平等关系,各工作或各工序之间可以独立进行,根据实际情况,可以安排它们同时进行.③交叉关系,一次工作或工序进行时,另外一些工作或工序可以穿插进行.(3)根据各工作或各工序所需要的工时进行统筹安排.(4)开始时流程图可以画得粗疏,然后再对每一框进行逐步细化.特别地:在程序框图中允许有闭合回路,而在工序流程图中不允许有闭合回路.变式训练2想沏壶茶喝,当时的情况是:开水没有,烧开水的壶要洗,沏茶的壶和茶杯要洗,茶叶已有,问应如何进行?(各工序所需时间分别为:洗水壶1分钟,洗茶壶、茶杯2分钟,烧开水15分钟,取茶叶1分钟,沏茶1分钟)【解析】方案一洗好水壶,灌入凉水,放在炉子上,打开煤气.待水烧开后,洗茶壶、茶杯,取茶叶,沏茶,用流程图表示为:洗水壶→烧开水→洗茶壶、茶杯→取茶叶→沏茶方案二合并可以同时进行的流程,即洗水壶,烧开水同时洗茶壶、茶杯,取茶叶,水烧开沏茶,用流程图表示为:洗水壶→烧开水,洗茶壶、茶杯,取茶叶→沏茶探究三流程图的应用例3以下是某基金公司的客服热线的服务内容和流程图.某人在该基金公司建立了账户并购买了基金,但忘记了基金账户,他想通过客服热线查询自己的基金账号,应如何操作?拨通客服热线账户查询2身份证号登录1输入6位查询密码分红查询3交易确认查询2账户份额查询1基金代码查询4基金账号查询5基金账号登录2直销交易1身份证号登录1输入8位交易密码申购2认购1赎回3转换4基金账号登录2净值查询3上一开放日净值1历史净值2人工服务0客服代表接听1语音留言2投诉1咨询2【思路探究】客服热线查询通常都是用流程图的形式给出各种业务的操作方式,另外也可以根据语音提示来完成操作.【自主解答】他要查询自己的基金账号,可如下操作:拨通客服热线⇒按2号键进行账户查询⇒按1号键用身份证号登录⇒输入6位查询密码⇒按5号键查询基金账号.方法总结阅读流程图,从中获取相应信息是流程图应用的主要体现,通过分析流程图,可以知道某项工作如何解决、有哪些步骤、需要注意哪些问题,因此可以整体上把握问题解决的流程,并且还可以进行优化.方法总结程序框图及其画法:(1)程序框图是一种用规定的图形、指向线及文字说明来准确表示算法的图形,能清楚的展现算法的逻辑结构,具有直观、形象的特点.(2)程序框图要基于它的算法,在对一个算法作了透彻分析的基础上再设计流程图,在设计流程图的时候要分步进行,把一个大的流程图分解成若干个小的部分,按照顺序结构、条件结构、循环结构来局部安排,最后再把各部之间进行组装,从而完成完整的程序框图.1.流程图表示一种动态的过程或过程性的活动.2.绘制流程图要搞清各过程间的关系,流程线上的箭头标识动态的方向;流程图通常一个起点,一个或多个终点.3.程序框图是流程图的一种,画程序框图要使用标准的符号,选用合适的逻辑结构,直观表示各算法步骤.当堂训练1.流程图描述动态过程,关于其“终点”的描述中,较为恰当的是()A.只允许有一个“终点”B.只允许有两个“终点”C.可以有一个或多个“终点”D.可以无“终点”【解析】流程图可以有一个或多个终点,选C.【答案】 C2.要描述一个工厂生产某种产品的步骤,应用()A.程序框图B.工序流程图C.知识结构图D.组织结构图【解析】工序流程图是描述产品生产工序的框图.【答案】 B3.进入互联网时代,发电子邮件是必不可少的,一般而言,发电子邮件要分成以下几个步骤:a.打开电子信箱;b.输入发送地址;c.输入主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”.则正确的是()A.a→b→c→d→e→fB.a→c→d→f→e→bC.a→e→b→c→d→fD.b→a→c→d→f→e【解析】根据发电子邮件实际操作的顺序可知选C.【答案】 C4.某市质量技术监督局质量认证审查流程图如图4-1-3所示,从图中可得在审查过程中可能不被通过审查的环节有________处.图4-1-3【解析】这是一个实际问题,观察流程图可知有3处判断框,即3处环节可能不被审查通过.【答案】 3。
第一课时2.1流程图学习目标1.通过具体实例,进一步认识程序框图.2.通过具体实例,了解工序流程图.3.能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.学习重难点1.流程图在实际生产、生活中的应用.(重点)2.绘制简单流程图.(重点、难点)基础知识(1)框图是表示一个系统各部分和各环节之间关系的图示,它能够清晰地表达比较复杂的系统各部分之间的关系.具体来讲本章主要研究有关程序流程图、工序流程图及一些实际问题的流程图,在画流程图时应注意先后顺序、逻辑关系和简单明快.(2)流程图描述动态过程,结构图刻画系统结构,描述的是一个静态结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由流程线连接;结构图则更多地表现为“树”形结构,其基本要素之间一般为概念上的从属关系或逻辑上的先后关系.[特别提醒]1.绘制流程图的一般过程:首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达;再次,分析各步骤之间的关系;最后,画出流程图表示整个流程。
绘制流程图的过程中,流程中的每一个明确的步骤构成了流程图的基本单元,基本单元之间通过流程线产生联系。
2.读懂流程图也是本节的一个重点内容之一,应根据题目中所给出的流程图看出整个问题解决的过程。
典例精析例1.学习数学的主要目的是为了解决生活中的实际问题,画出利用数学知识解决实际问题的流程图。
[警示]用流程图可以表示用数学知识解决实际问题的过程,但并不能解决具体的实际问题,流程图只是某一种算法的图示表现,是一种解决问题的思想。
在阅读和绘制流程图时,一是要符合人们的习惯,一般顺序是从左到右,从上到下;二是绘制流程图时没有一定的规范和标准,可以使用不同的色彩,也可以添加生动的图形元素等等。
例2.某公司准备生产一种新型产品,为了更好地掌握生产,准备派人到北京、上海、广州进行调研,以便于决定生产数量。
请画出此公司的流程方案。
流程图(简答题:一般)1、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.2、已知函数,对每输入的一个值,都得到相应的函数值,画出程序框图并写出程序.3、已知数列的递推公式,且,请画出求其前5项的流程图.4、已知某算法的算法框图如图所示.(1)求函数的解析式;(2)求的值.5、的取值范围为[0,10],给出如图所示的程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.6、已知数列的各项均为正数,观察程序框图,当,时,.(1)求数列的通项;(2)令,求的值.7、某药厂生产某种产品的过程如下:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装包装;(2)提取环节经检验,合格,进入下一工序,否则返回前处理;(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品,画出生产该产品的工序流程图.8、根据下面的要求,求┅值.(Ⅰ)请将程序框图补充完整;(Ⅱ)求出(I)中输出S的值.9、求满足的最小正整数,写出算法的程序并画出程序框图.10、执行如下程序框图:(1)如果在判断框内填入“”,请写出输出的所有数值;(2)如果在判断框内填入“”,试求出所有输出数字的和。
11、根据下面的程序,画出其对应的程序框图.12、读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.13、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.14、某算法的程序框图如图所示,其中输入的变量在1,2,3,…30这30个整数中等可能随机产生. (1)分别求出(按程序框图正确编程运行时)输出的值为的概率;(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)乙的频数统计表(部分)当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.15、(2015秋•宁德期末)阅读如图所示程序框图,根据框图的算法功能回答下列问题:(Ⅰ)当输入的x∈[﹣1,3]时,求输出y的值组成的集合;(Ⅱ)已知输入的x∈[a,b]时,输出y的最大值为8,最小值为3,求实数a,b的值.16、的取值范围为[0,10],给出如图所示程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.17、(本题满分16分)对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{x n}.(1)若定义函数,且输入,请写出数列{x n}的所有项;(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{x n},试求输入的初始数据x0的值及相应数列{x n}的通项公式x n;(3)若定义函数f(x)=2x+3,且输入x0=﹣1,求数列{x n}的通项公式x n.18、在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖",则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.19、(本小题满分12分)如图所示程序框图中,有这样一个执行框=f()其中的函数关系式为,程序框图中的D为函数f(x)的定义域.,(1)若输入,请写出输出的所有;(2)若输出的所有xi都相等,试求输入的初始值.20、(本小题满分12分)已知数列的各项均为正数,观察流程图,当时,;当时,,(1)写出时,的表达式(用等来表示);(2)求的通项公式;(3)令,求.21、(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值,(I)请指出该程序框图所使用的逻辑结构;(Ⅱ)若视为自变量,为函数值,试写出函数的解析式;(Ⅲ)若要使输入的的值与输出的的值相等,则输入的值的集合为多少?22、(本小题满分13分)从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图的频率分布直方图,从左到右各组的频数依次记为,,,,.(1)求图中的值;(2)下图是统计图中各组频数的一个算法流程图,求输出的结果;(3)从质量指标值分布在、的产品中随机抽取2件产品,求所抽取两件产品的质量指标值之差大于10的概率.23、对任意函数,,可按如图构造一个数列发生器,记由数列发生器产生数列{}.(1)若定义函数,且输入,请写出数列{}的所有项;(2)若定义函数(0≤x≤2π),且要产生一个无穷的常数列{},试求输入的初始数据的值及相应数列{}的通项公式;(3)若定义函数,且输入,求数列{}的通项公式.参考答案1、(1);(2).2、见解析3、见解析4、(1);(2)5、(1)(2)(3)6、(1)(2)7、见解析8、(I);(II).9、程序见解析,程序框图见解析.10、(1)(2)11、程序框图见解析.12、,.13、(1);(2).14、(1),,;(2)乙.15、(Ⅰ)输入x∈[﹣1,3],输出y的值组成的集合为[0,8];(Ⅱ)所求实数a,b的值为或16、(1);(2);(3).17、(1);(2)故当,;当;(3)18、(1);(2)19、(1)(2)或20、(1);(2);(3).21、(I)条件结构和顺序结构(Ⅱ)(Ⅲ)22、(1)0.005;(2)18;(3)23、(1),,;(2)当时,;当时,;(3).【解析】1、试题分析:(1)根据程序框图的循环结构,根据判断框的条件,即可求解;(2)根据第一次运算,第二次运算,即可得出,即可求解的值.试题解析:(1)第一次运算:,,;第二次运算:,,;第三次运算:,,;第四次运算:,,;第五次运算:,,,输出.(2)第一次运算:,,,此时不成立,则.第二次运算:,,,此时成立,则,∴,又,∴.考点:程序框图的运算.2、试题分析:利用条件结构和条件语句可实现分段函数求值的算法,进而可得程序框图并编写相应的程序。