常见18种电动机降压启动电路图,一看就懂
- 格式:docx
- 大小:1.48 MB
- 文档页数:24
常见18种电动机降压启动电路图,一看就懂一、自耦减压启动自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。
它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。
图1 自耦减压启动工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。
待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。
此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。
停转时,按下SB按钮即可。
自耦变压器次级设有多个抽头,可输出不同的电压。
一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。
二、手动控制Y-△降压启动Y-△降压启动的特点是方法简便、经济。
其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。
图2 手动控制Y-△降压启动图2所示为QX1型手动Y-△启动器接线图。
图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。
当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组接成Y形降压启动;当电动机转速上升到一定值时。
将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。
三、定子绕组串联电阻启动控制电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。
定子绕组串联电阻启动控制线路如图3所示。
当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。
这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。
Y—△降压起动电气原理图及讲解This model paper was revised by the Standardization Office on December 10, 2020Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一线路的设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。
而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。
2.典型线路介绍定子绕组接成Y—△降压起动的自动控制线路如图所示。
图Y—△降压起动控制线路工作原理:按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。
同时,时间继电器KT及接触器KM2线圈得电。
接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。
KM2的常闭辅助触点断开,保证了接触器KM3不得电。
时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。
接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。
停车按SB1 辅助电路断电各接触器释放` 电动机断电停车线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。
三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。
其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。
所以该线路适用于轻载或空载起动的场合。
电动机定子串电阻降压起动操控线路图
解
这种操控线路的思路较简略,假定电动机起动时在三相定子电路中别离串联电阻,与绕组构成串联分压,则能够使电动机定子绕组在起动时电压下降,起动进程完毕后再将电阻短路,电动机依然在正常电压下作业。
这种起动办法由于不受电动机接线办法的绑缚,设备简略,因而在中小型机床中也有运用。
机床中也常用这种串联电阻的办法绑缚点动调整时的起动电流。
图1电动机定子串电阻降压起动操控线路
操控线路动作次第简表如下:
按下SB2将使KM1得电,主触点闭合,电阻R被串联入电动机定子各相电路,完毕降压起动;与此一同,通电延不时刻继电器KT 得电,延时进程开端,通过一段时刻(电动机转速挨近额外转速)后,时刻继电器延时触点动作,与KM2串联的延时闭合常开触点(图1中的赤色圈闪现)闭合,使KM2得电,有关辅佐触点(图1中的紫色圈闪现)动作,(版权悉数)使KM1、KT均断开,而其自身自锁(图1中的紫绿色圈闪现),电动机正常作业。
除了串联电阻降压起动外,是不是还有其它串联阻抗的降压起
动办法,与串电阻比照,孰优孰劣?
定子串电阻降压起动操控线路中,假定恳求每相串联电阻后,起动电流减小到直接起动时的一半,串联电阻阻值怎样核算?(设电动机每相定子绕组的等效短路电阻为,感抗为,容抗为)答案/答题指引:
主张咱们具体阅览有关本钱2中对于“笼形三相异步电动机的起动”一末节的内容。
设直接起动时加于电动机定子上的电压,起动电流,则
设串入起动电阻为三相对称电阻,串联电阻降压起动时的起动电流,由于起动电阻三相对称,因而此刻单相定子绕组的阻抗摸为,则
依据恳求,有
解得:。
电动机接线图-控制线路图大全Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。
由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。
Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。
OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。
OX3—13型Y-△自动启动器的控制线路如图11—11所示。
()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形(Y—△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。
Y—△起动只能用于正常运行时为△形接法的电动机。
1.按钮、接触器控制Y—△降压起动控制线路图2.19(a)为按钮、接触器控制Y—△降压起动控制线路。
线路的工作原理为:按下起动按钮SB1,KM1、KM2得电吸合,KM1自锁,电动机星形起动,待电动机转速接近额定转速时,按下SB2,KM2断电、KM3得电并自锁,电动机转换成三角形全压运行。
2.时间继电器控制Y—△降压起动控制线路图2.19(b)为时间继电器自动控制Y—△降压起动控制线路,电路的工作原理为:按下起动按钮SB1,KM1、KM2得电吸合,电动机星形起动,同时KT也得电,经延时后时间继电器KT常闭触头打开,使得KM2断电,常开触头闭合,使得KM3得电闭合并自锁,电动机由星形切换成三角形正常运行。
串电阻(或电抗)降压起动控制线路在电动机起动过程中,常在三相定子电路中串接电阻(或电抗)来降低定子绕组上的电压,使电动机在降低了的电压下起动,以达到限制起动电流的目的。
Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一线路的设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。
而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。
2.典型线路介绍定子绕组接成Y—△降压起动的自动控制线路如图所示。
图Y—△降压起动控制线路工作原理:按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。
同时,时间继电器KT及接触器KM2线圈得电。
接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。
KM2的常闭辅助触点断开,保证了接触器KM3不得电。
时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。
接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。
停车按SB1 辅助电路断电各接触器释放` 电动机断电停车线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。
三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。
其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。
所以该线路适用于轻载或空载起动的场合。
另外应注意,Y—△联接时要注意其旋转方向的一致性。
18种电动机常用电气二次控制线路图
舒晓
05-29 00:14
单方向运行线路图
断相保护电路线路图
单方向运电路线路图
多保护控电路线路图
多条件启动线路图
可逆带限位电路线路图
可逆点动线位电路线路图
两地控制电路线路图
全波能耗制动电路线路图
定子窜电阻降压启动线路图
自动往返电路线路图
自偶降压启动线路图
防止相间短路正反转线路图
互锁线路图
两台电机顺序启动线路图
双速电动机控制线路图
启动星三角降压1线路图
双速控制1绕线电动机转线路图。
1.基本的直接启动控制线路
按下启动按钮,KM线圈得电,KM常开辅助触点自锁,绿灯亮,电机运行;按下停止按钮,KM线圈失点,辅助触点复位,红灯亮,电机停止。
2 直接启动,延时停止
通过时间继电器作用,延时使回路断开。
3 控制电机正反转
使用双重互锁,采用复合按钮和2个接触器。
将2个接触器的常闭辅助触点相互串联在对方回路中,安全方便,避免了短路的发生~
4 顺停、逆停循环
5 电机轮流循环启动
6 三台电机轮流循环
7 单按钮控制电机启动停止
8 时间继电器控制双速电机
9 定子串电阻降压启动
这个不太常用!
10 延边三角形降压启动
这个知道就行!!!
11 星三角降压启动
照片名称:星三角降压启动实物接线图
照片名称:星三角
照片名称:星三角启动控制线路图
照片名称:星三角
(这个很重要,也和简单,也很实用的降压启动,一般电机大于7.5千瓦,为了保护电压网就应
该采取降压的方式。
)
12 自耦降压
这也是很使用的降压启动控制线路。
一般大于40千瓦的电机使用。
18种电动机降压启动接线方法电动机降压启动接线方法,通常是为了实现电动机的低速起动和高速运行的需求,可以通过改变电动机的供电电压来实现。
1.直接降压起动法:将电动机直接与降压器相连接。
降压器通过改变电动机的供电电压来实现降压启动。
2.限流降压法:通过限制电动机启动过程中的电流流动来实现降压启动。
3.电阻降压法:采用电阻器串联在电动机供电电路中,通过改变电阻的阻值来实现降压启动。
4.编接降压法:将一个或多个电动机并联在电源端,通过电动机的总电流来实现降压启动。
5.前重负载法:在电动机启动前,将一个或多个较大的负载与电动机并联,通过负载的电流负载使电动机降压启动。
6.后重负载法:在电动机启动后,将一个或多个较大的负载与电动机并联,通过负载的电流负载使电动机降压启动。
7.切向面降压法:通过改变电动机的励磁电流来实现降压启动。
8.多电动机串联法:将多个电动机进行串联,通过串联电动机的总电压来实现降压启动。
9.多电动机并联法:将多个电动机进行并联,通过并联电动机的总电流来实现降压启动。
10.电动机三角-星型降压法:采用三角形连接法或星型连接法来调整电动机的供电电压,实现降压启动。
11.自耦变压器降压法:通过自耦变压器来改变电动机的供电电压,实现降压启动。
12.自耦变阻降压法:通过自耦变阻器来改变电动机的供电电压,实现降压启动。
13.自耦变阻串并联法:将自耦变阻器串联和并联来调整电动机的供电电压,实现降压启动。
14.变压器降压法:通过变压器来改变电动机的供电电压,实现降压启动。
15.变阻降压法:通过改变电动机供电电路中的电阻值来实现降压启动。
16.降压软启动法:通过使用降压软启动器来实现电动机的降压启动。
17.双电源降压法:通过将两个不同电源的电压进行合并来实现降压启动。
18.频率变压降压法:改变电源的频率来实现电动机的降压启动。
常见18种电动机降压启动电路图,一看就懂一、自耦减压启动自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。
它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。
图1 自耦减压启动工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。
待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。
此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。
停转时,按下SB按钮即可。
自耦变压器次级设有多个抽头,可输出不同的电压。
一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。
二、手动控制Y-△降压启动Y-△降压启动的特点是方法简便、经济。
其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。
图2 手动控制Y-△降压启动图2所示为QX1型手动Y-△启动器接线图。
图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。
当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组接成Y形降压启动;当电动机转速上升到一定值时。
将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。
三、定子绕组串联电阻启动控制电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。
定子绕组串联电阻启动控制线路如图3所示。
当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。
这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。
KM2主触点闭合短接启动电阻,使电动机在全电压下运行。
停机时,按下停机按钮SB2即可。
四、手动串联电阻启动控制当三相交流电动机标牌上标有额定电压为220/380V(△/Y)的接线方法时,不能用Y-△方法做降压启动,可用这种串联电阻或电抗器方法启动。
线路如图4所示。
当需启动电动机时,按下开关按钮SB1,电动机串联电阻启动。
待电动机转速达到额定转速后,再按下SB3,电动机电源改为全压供电,使电动机正常运行。
五、定子绕组串电阻(或电抗)降压启动另一法图5 定子绕组串电阻(或电抗)降压启动另一法按下启动按钮SB1,KM1、KT获电动作,其常开辅助触点闭合自锁,电动机定子绕组串入电阻降压启动。
时间继电器达到整定时间后,KT常开延时闭合触点闭合,KM2获电动作,其主触点闭合将电阻短接,电动机定子绕组加上电源全电压,启动过程结束,如图5所示。
这种线路适用于要求启动平稳的中等容量的笼型异步电动机。
它的不足是启动转矩因启动电流减小而降低。
另外,启动电阻要消耗一定的功率,所以不宜频繁启动。
六、用晶体管延时电路自动转换Y-△启动控制用电子元件组成的延时电路具有体积小、价格低等优点。
用晶体管延时电路自动转换Y-△启动控制线路如图6所示。
当按下启动按钮SB1时,交流接触器KM1和KM2同时得电,电动机接成Y形启动,与此同时,KM1的常开辅助触点把晶体管延时电路接通。
继电器KT延时动作,其常闭触点KT打开,切断KM2的线圈回路;与此同时,其常开触点KT闭合,使接触器KM3得电吸合,电动机接成△形正常运行。
调整线路中电容C2容量的大小或电位器RP,可控制三极管达到导通的时间,即延时时间。
大家伙都关注了这个公众号'电路一点通',电路一点通“电路一点通”聚电路技术资源、电子电路、高品质电路图、电路原理图,每日电路赏析3篇原创内容公众号图6 用晶体管延时电路自动转换Y - △启动控制七、采用自耦变压器与时间继电器启动的两种控制对容量较大的220/380V△/Y形笼型电动机不能用Y-△方法启动,可用自耦变压器及时间继电器完成自动控制启动。
见图7(a),只要按下操作按钮SB1,KM1吸合,进行降压启动,经一段时间,电动机达到额定转速后,时间继电器KT动作,KM1失电,KM2得电,电动机在全压下正常运转。
按下SB2停止按钮,电动机便失电停转。
而另一种采用自耦变压器与时间继电器启动控制的线路如图7(b)所示,它的线路较完善,故在启动大型电动机时采用这种方法非常多见。
工作时按下启动按钮SB1,电动机降压启动。
待电动机启动完毕,通过时间继电器能自动转换为全压运行。
另外图7(b)中还加有指示灯线路,用于指示整个启动过程的情况。
图7 采用自耦变压器与时间继电器启动的两种控制图7 采用自耦变压器与时间继电器启动的两种控制八、自耦变压器手动启动控制自耦变压器手动启动控制线路如图8所示。
当启动电动机时,按下SB1按钮,这时KM1接触器得电吸合,电动机通过自耦变压器启动。
待电动机启动完毕后,按一下SB3按钮,电动机即可变为正常全压运行。
图8 自耦变压器手动启动控制九、用中间、时间继电器延时转换的Y-△降压启动控制这种控制线路在设计上增加了一级中间继电器和时间继电器,可以防止大容量电动机在Y-△转换过程中,由于转换时间短,电弧不能完全熄灭而造成的相间短路。
它适用于55kW以上△形接法的大容量电动机,见图9所示。
工作原理是:当接通电源时,时间继电器KT2获电动作,为启动做好准备。
按下启动按钮SB1,KM1、KT1、KM3获电动作。
KM1常开辅助触点闭合自锁,电动机绕组接成Y形接法降压启动。
KT1达到整定延时时间后,KT1延时断开的常闭触点断开,使KM3失电释放;同时KT1延时闭合的常开触点闭合,使中间继电器KA获电动作。
KA常闭触点断开使KT2失电释放,同时KA常开触点闭合。
当KT2断电,延时触点达到延时时间(0.5~1s)闭合后,KM2才获电动作。
这时电动机由Y形接法转换为△形接法,启动过程结束。
图9 用中间、时间继电器延时转换的Y-△降压启动控制十、用时间继电器自动转换Y-△启动控制用时间继电器自动转换Y-△启动电动机控制线路如图10所示。
当按下按钮SB1时,接触器KM3、KM1吸合,这时电动机为Y形启动。
当经过一定延时,电动机启动完毕后(时间继电器一般控制在30s),时间继电器KT常闭触点断开,使KM3失电释放,同时由于KM3的释放又接通了KM2线圈的电源,KM2吸合,电动机改为△形运行。
图10 用时间继电器自动转换Y-△启动控制十一、笼型电动机Y-△换接启动控制线路如图11所示。
在启动电动机时,先合上开关QS,按下按钮SB1,接触器KM1得电吸合,接触器自锁。
Y形启动接触器KM3线圈和时间继电器KT线圈保持通电,KM3常开主触点接通,电动机接成Y 形启动。
同时常闭辅助触点KM3分断,使△形运行接触器KM2线圈断路。
待时间继电器延时到一定时间后(时间继电器可由电动机的容量和启动时负载的情况来调整),时间继电器KT的常闭延时分断和常开延时闭合的触点分别动作,使KM3断电,使KM2线圈通电,并使其触点自锁,电动机接成△形运行。
同时KM2常闭辅助触点断开,使KT和KM3线圈断电。
图11 笼型电动机Y-△换接启动控制图11中热继电器FR与电动机一相绕组串联,其整定电流应为电动机相电流的额定值。
在△形接法的电动机中,热继电器按上述方法连接,较为可靠。
十二、手动Y-△降压启动控制在条件较差的地区,也可自装手动Y-△降压启动控制线路,见图12。
按下启动按钮SB1时,KM1得电,其常开触点闭合,KM3得电,常闭触点断开,常开触点闭合,电动机绕组接成Y形降压启动。
当转速达到(或接近)额定转速时,按下SB3按钮,使KM3失电释放,KM2得电吸合,电动机由Y形接法转换成△形接法。
这种控制线路适用于55kW以下、13kW以上的△形接法的电动机。
图12 手动Y-△降压启动控制十三、采用补偿器的启动控制线路如图13所示。
按下启动按钮SB1,接触器KM1、时间继电器KT得电,KM1常开触点闭合自锁。
接触器KM1主触点闭合,使补偿器接入电动机降压启动回路,电动机开始启动。
时间继电器KT按整定时间延时,电动机达到运转速度后,其常闭触点打开,使接触器KM1失电,主触点打开,补偿器脱离,同时常闭触点闭合。
另外,时间继电器KT常开触点也接通,这时接触器KM2得电,其常开触点闭合自锁,KM2常闭触点打开,时间继电器KT失电,接触器KM2主触点闭合,电动机投入正常运转。
图13 采用补偿器的启动控制十四、用两个接触器实现Y-△降压启动控制图14 用两个接触器实现Y-△降压启动控制按下启动按钮SB1,KM1、KT获电动作,KM1常开辅助触点闭合自锁,电动机绕组接成Y形降压启动。
经过一段时间,KT延时断开的常闭触点断开,KM1失电释放,其常闭辅助触点闭合。
同时KT延时闭合的常开触点闭合,KM2获电动作,其常闭触点打开,将Y形接线断开;其常开触点闭合,使KM1得电动作,闭合其主回路常开触点,电动机由Y形接法转换为△形接法。
这种线路仅适应于功率在13kW以下△形接法的小容量电动机,否则由于KM2接触器常闭辅助触点接在主电路中,容量小,很易烧损。
十五、用3个接触器实现Y-△降压启动控制用3个接触器的Y-△降压启动控制线路如图15所示。
按下启动按钮SB1,KM1、KT、KM3获电动作,电动机绕组接成Y形降压启动。
时间继电器达到整定延时时间后,延时闭合的常开触点闭合,延时断开的常闭触点断开,KM3失电释放,这时KM3常闭辅助触点闭合,使KM2获电动作,电动机绕组由Y形接法转换成△形接法,启动过程结束。
这种控制线路适用于55kW以下、13kW以上的△形接法的电动机。
图15 用3个接触器实现Y-△降压启动控制十六、常用自动补偿降压启动柜在需要自动控制启动的场合,常采用XJ01型自动启动补偿器,它主要由自耦变压器、交流接触器、中间继电器、时间继电器和控制按钮等组成。
XJ01型自动启动补偿器工作原理如图16(a)所示:接通电源,灯Ⅰ亮,按下启动按钮SB1,KM1线圈得电,KM1主触点闭合,电动机降压启动。
KM1闭合自锁,灯Ⅱ亮。
KM1常闭触点断开,灯Ⅰ灭,KT得电,其常开触点延时闭合,KA线圈获电,常闭触点KA断开,KM1断电,KM1常开触点断开。
同时常开触点KA闭合,KM2线圈得电,KM2主触点闭合,电动机全压运行,KM2常开触点闭合,灯Ⅲ亮。
功率较大的电动机也可采用配套的配电柜来满足启动的要求,图16(b)所示是75kW电动机启动配电柜的线路。
这种启动器具有自动操作功能和手动操作功能两种。
自动操作时,合上电源开关,绿色指示灯亮,按下按钮开关SB1时,KM3和时间继电器KT得电吸合,同时KM3常开触点闭合,KM2也吸合,松开SB1按钮,KM3自锁触点继续接通KM3、KM2、KT线圈回路,保持继续吸合。