y=a(x-h)2+k的图象和性质
- 格式:ppt
- 大小:1.40 MB
- 文档页数:47
二次函数y=ax2+k的图像性质教学设计【教学目标】知识与能力: 1、使学生能利用描点法正确作出函数y=ax2+k的图象,掌握它的图象特征,并会总结它的性质。
2、理解二次函数y=ax2+k与y=ax2的的图像和性质的异同,能用平移的方法解决图象间关系。
过程与方法:经历操作、研究、归纳和总结二次函数y=ax2+k的图像性质及它与函数y=ax2的关系,让学生进一步体尝试去发现二次函数的图象特征;体会其性质;渗透由特殊到一般的辩证唯物主义观点和数形结合的数学思想,培养观察能力和分析问题、解决问题的能力。
情感态度与价值观:1、培养学生探索、观察、发现的良好品质以及克服困难的毅力,并学会归纳总结自己的结论,体会成功的喜悦,加强继续学习的兴趣。
2、通过细心画图,培养学生严谨细致的学习态度。
【教学重难点】教学重点:会用描点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k 的图象性质。
教学难点:理解抛物线y=ax2+k与抛物线y=ax2的之间的位置关系【教法学法分析】数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。
为此设计了4个环节:(一)复习回顾——引入新课;(二)自主探究,合作交流——发现规律;(三)当堂训练——检查自我。
(四)课堂小结——深化巩固;这四个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。
【教学过程】(一)复习回顾,引入新课回顾二次函数y=ax2的图象和性质设计意图:此环节通过对前一节所学内容的复习,让学生回忆如何根据函数关系式的特征,判定函数y=ax2的图像特征,为进一步探索y=ax2+k的图像特征作铺垫,从而引入本节新课。
y=a (x -h )2+k 的图象和性质回顾:抛物线2)(h x a y -=+k 与2ax y =之间存在什么样的平移规律? 仔细梳理,认真填写:归纳反思二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变.所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关. 典型例题例 1 把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b ,c 的值.分析:把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.解:根据题意得,y=(x-4)2-2=x 2-8x=14, 所以 8,14.b c =-⎧⎨=⎩例2 第一象限内的点A 在一反比例函数的图象上,过A 作AB ⊥x 轴,垂足为B ,连AO ,已知△AOB 的面积为4.(1)求反比例函数的解析式;(2)若点A 的纵坐标为4,过点A 的直线与x 轴交于P ,且△APB 与△AOB 相似,求所有符合条件的点P 的x坐标;(3)在(2)的条件下,过点P ,O ,A 的抛物线是否可由抛物线241x y =平移得到?若是,请说明由抛物线241x y =如何平移得到;若不是,请说明理由. 解:(1)设反比例函数的解析式为xky =,点A 的坐标为(x ,y ),∵S △AOB = 4, ∴421=xy ,∴x 8=y ,∴xy 8=.(2)由题意得A (2,4),∴B (2,0).∵ 点P 在x 轴上,设P 点坐标为(x ,0),∴∠ABO =∠ABP =900.∴△ABP 与△ABO 相似有两种情况:①当△ABP ∽△ABO 时,有BP ABBO AB =.∴BP=BO=2,∴P (4,0). ②当△PBA ∽△ABO 时,有BA PB BO AB =,即424PB=,∴PB=8.∴P (10,0)或P (-6,0). ∴ 符合条件的点P 坐标是(4,0)或(10,0)或(-6,0).(3)当点P 坐标是(4,0)或(10,0)时,过点P ,A ,O 三点的抛物线的开口向下,∴不能由241x y =的图象平移得到. 当点P 坐标是(-6,0)时,设抛物线解析式为)6(+=x ax y . ∵抛物线过点A (2,4),∴41=a ,∴)6(412x x y +=,∴49)3(412-+=x y . ∴该抛物线可以由241x y =向左平移3个单位,向下平 移49个单位得到. 强化练习 一、选择题1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位 2.二次函数2)1(212+-=x y 的图象可由221x y =的图象( ) A .向左平移1个单位,再向下平移2个单位得到 B .向左平移1个单位,再向上平移2个单位得到 C .向右平移1个单位,再向下平移2个单位得到 D .向右平移1个单位,再向上平移2个单位得到3.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=21 二、填空题4.把函数22x y =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 .5.抛物线m x x y +-=42的顶点在x 轴上,其顶点坐标是 ,对称轴是 . 6.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 7.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.。
圆梦堂文化培训学校精品班教案第 11 讲要点1二次函数y=ax2+k的图象和性质1. 二次函数y=ax2+k(a≠0)的图象是一条,其对称轴是轴,顶点坐标为 .2. 抛物线y=ax2+k,当a>0时,开口向,顶点是它的最点,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而;当a<0时,开口向,顶点是它的最点,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而.要点2二次函数y=ax2+k与y=ax2的图象之间的平移当k>0时,y=ax2+k是将y=ax2的图象向上平移个单位得到的;当k<0时,y=ax2+k是将y =ax2的图象向平移|k|个单位得到的.要点3二次函数y=a(x-h)2的图象和性质1. 二次函数y=a(x-h)2(a≠0)的图象是一条,其对称轴是,顶点坐标为.2. 抛物线y =a (x -h )2,当a >0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 ;当a <0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 要点4 二次函数y =a (x -h )2与y =ax 2图象之间的平移当h >0时,y =a (x -h )2是将y =ax 2的图象向右平移 个单位得到的;当h <0时,y =a (x -h )2是将y =ax 2的图象向 平移|h |个单位得到的. 要点5 二次函数y =a (x -h )2+k 的图象和性质1. 二次函数y =a (x -h )2+k(a ≠0)的图象是一条 ,其对称轴是 ,顶点坐标为 .2. 抛物线y =a (x -h )2+k ,当a >0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 ;当a <0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 要点6 二次函数y =a (x -h )2+k 与y =ax 2图象之间的平移y =a (x -h )2+k 是将y =ax 2的图象向右(左)平移 个单位再向上(下)平移 个单位得到的;左加右减自变量;上加下减函数值。
第二十二章 二次函数22.1二次函数的图象和性质 二次函数y =a (x -h )2+k 的图象和性质教学设计 第 1 课时一、教学目标1.使学生理解二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象之间的关系. 2.会确定二次函数y =ax 2+k 的图象的开口方向、对称轴和顶点坐标.二、教学重点及难点重点:理解二次函数y =ax 2+k 的性质及其图象与y =ax 2的图象之间的关系. 难点:正确理解二次函数y =ax 2+k 的图象与二次函数y =ax 2的图象之间的关系以及二次函数y =ax 2+k 的性质.三、教学用具多媒体课件,三角板或直尺。
四、相关资源《二次函数y =ax 2图象与性质的复习》动画,《二次函数y =2x 2+1和y =2x 2-1的图象画法》动画,《《二次函数y =2x 2+1和y =2x 2-1的图象》图片,《函数2133y x =+,2123y x =-》动画)。
五、教学过程【复习提问】你能说出二次函数y =ax 2的性质吗?师生活动:教师提出问题,全班学生回顾,一起回答问题.小结:一般地,抛物线2y ax =的对称轴是y 轴,顶点是原点.当a >0时,抛物线的开口向上,顶点是抛物线的最低点;当a <0时,抛物线的开口向下,顶点是抛物线的最高点.对于抛物线2y ax =,|a |越大,抛物线的开口越小,|a |越小,抛物线的开口越大.如果a >0,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大; 如果a <0,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小.设计意图:让学生温习已学的知识,巩固上节课的内容,为本节课作铺垫. 【合作探究】1.在同一直角坐标系中,画出二次函数y =2x 2+1,y =2x 2-1的图象.师生活动:师生一起完成列表,再由学生画出图象,交流成果,如图所示,教师投影订正.在学生画函数图象时,教师巡视指导.解:(1)列表:(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑曲线顺次连接各点,得到二次函数y =2x 2+1和y =2x 2-1的图象.设计意图:通过学生动手画二次函数2y ax k =+的图象,给学生创设活动时间和空间,体现教师是主导,学生是主体的教学地位,让学生经历知识的发生、发展的过程,并通过观察、分析、探索出二次函数2y ax k =+的图象的有关性质,培养学生数形给合的思想.2.思考:(1)抛物线y =2x 2+1,y =2x 2-1的开口方向、对称轴和顶点各是什么?此图片是动画缩略图,此处插入交互动画《【知识探究】画二次函数平移的图象》,可以对y =ax 2图象上下平移得出y =ax 2±k 的图象,观察、分析函数y =ax 2±k 的图象的开口方向、对称轴和顶点坐标.师生活动:让学生分组讨论,交流合作,各组选派代表发表意见.教师聆听,关注学生回答是否正确.小结:抛物线y =2x 2+1,y =2x 2-1的开口都是向上,对称轴都是y 轴,顶点分别是(0,1)与(0,-1).(2)抛物线y =2x 2+1,y =2x 2-1与抛物线y =2x 2有什么关系?师生活动:让学生观察三个函数图象,说出把抛物线y =2x 2的图象向上平移1个单位长度,就得到抛物线y =2x 2+1;把抛物线y =2x 2向下平移1个单位长度,就得到抛物线y =2x 2-1.(3)抛物线y =ax 2+k 与y =ax 2有什么关系?师生活动:四人一小组,小组讨论、交流.教师巡查,关注学生是否认真讨论,能否讨论归纳得出结论.归纳:抛物线y =ax 2+k 与y =ax 2形状相同,位置不同;当k >0时,抛物线y =ax 2向上平移|k |个单位长度可以得到抛物线y =ax 2+k ; 当k <0时,抛物线y =ax 2向下平移|k |个单位长度可以得到抛物线y =ax 2+k .设计意图:通过分析、小组合作探究,引导学生完成对知识的归纳,符合学生的认知规律,同时也培养了学生分析问题和解决问题的能力,完成由实践上升到理论这一认知过程.【例题分析】例 分别在同一直角坐标系中,描点画出下列二次函数的图象,并写出对称轴和顶点:2133y x =+,2123y x =-。