初中数学 一次函数图像与性质
- 格式:ppt
- 大小:858.50 KB
- 文档页数:19
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,还为后续学习其他函数奠定了基础。
接下来,让我们一起系统地梳理一下一次函数的相关知识点。
一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x 的正比例函数。
理解一次函数的定义需要注意以下几点:1、自变量 x 的次数是 1。
2、系数 k 不为 0。
3、常数项 b 可以为任意实数。
二、一次函数的图像一次函数的图像是一条直线。
1、当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
2、 b 的值决定了直线与 y 轴的交点坐标。
当 x = 0 时,y = b,所以直线 y = kx + b 与 y 轴的交点坐标为(0,b)。
例如,函数 y = 2x + 1 的图像是一条斜率为 2,截距为 1 的直线。
当 x = 0 时,y = 1,所以它与 y 轴交于点(0,1);当 y = 0 时,2x + 1 = 0,解得 x =-1/2,所以它与 x 轴交于点(-1/2,0)。
三、一次函数的性质1、增减性如前所述,k 的正负决定了函数的增减性。
2、对称性一次函数的图像是轴对称图形,直线 y = kx + b 关于直线 x =b/2k 对称。
四、一次函数的表达式1、已知两点坐标(x₁,y₁),(x₂,y₂),可以通过待定系数法求出一次函数的表达式。
设一次函数的表达式为 y = kx + b,将两点坐标代入,得到方程组:y₁= kx₁+ by₂= kx₂+ b解这个方程组,求出 k 和 b 的值,即可得到一次函数的表达式。
2、已知直线的斜率 k 和一个点的坐标(x₀,y₀),也可以用点斜式求出表达式:y y₀= k(x x₀)五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
初中数学什么是一次函数它有什么特点一次函数,也被称为线性函数,是初中数学中的一个重要概念。
它是一个以x 的一次方程表示的函数,具有以下形式:f(x) = ax + b,其中a 和 b 是常数。
一次函数在数学中有着广泛的应用,并且具有一些特点和性质。
在本文中,我们将详细讨论一次函数的概念、特点和性质。
一次函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
其中a 被称为斜率,代表了函数图像的倾斜程度;b 被称为截距,表示函数图像与y 轴的交点。
一次函数的特点和性质如下:1. 直线图像:一次函数的图像是一条直线。
这是因为一次函数是一个一次方程,其图像是一个直线。
直线可以通过两个点来确定,因此我们只需要确定两个点就可以画出一次函数的图像。
2. 斜率:一次函数的斜率决定了函数图像的倾斜程度。
斜率表示了函数在x 方向上的变化率。
当斜率为正时,函数图像向上倾斜;当斜率为负时,函数图像向下倾斜;当斜率为零时,函数图像是水平的。
3. 截距:一次函数的截距决定了函数图像与y 轴的交点。
当x = 0 时,我们可以计算出函数的截距。
截距表示了函数图像与y 轴的位置关系。
4. 增减性:一次函数的增减性由斜率来决定。
当斜率为正时,函数是递增的,即随着x 的增大,函数值也增大;当斜率为负时,函数是递减的,即随着x 的增大,函数值减小。
5. 零点:一次函数的零点表示了函数图像与x 轴的交点。
当函数的值为零时,我们可以求解出函数的零点。
零点表示了函数在x 轴上的位置。
6. 平行和垂直:一次函数的平行和垂直关系可以通过斜率来确定。
如果两个一次函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的倒数的相反数,则它们是垂直的。
7. 线性关系:一次函数是一种线性关系。
线性关系表示了两个变量之间的直接关系。
在一次函数中,x 和f(x) 之间存在着线性关系,即x 的增加或减少会导致f(x) 的相应变化。
通过以上的讨论,我们可以了解一次函数的概念、特点和性质。
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
一次函数知识点一:一次函数图像的特点两点确定一条直线,根据这个特点,我们在画一次函数的图像时,可以确定两个点,再过这两个点做直线就行了,而且,为了简单,我们常选过点(0,b )和)0,(kb-作直线。
由观察可知:(1) 正比例函数的图像时一条直线,并经过两个象限。
(2) 当k>0,其图像经过第一、三象限,当k<0时,其图像经过第二、四象限。
知识点二:一次函数及图像的性质 (1) 增减性: 对于一次函数y=kx+b当k>0,y 的值随x 的增大而增大; 当k<0,y 的值随x 的增大而减小; (2) 图像所在的象限:当k>0,b>0,图像位于第一、二、三象限; 当k>0,b<0,图像位于第一、三、四象限; 当k<0,b>0,图像位于第一、二、四象限; 当k<0,b<0,图像位于第二、三、四象限;(3) 两直线的位置关系:直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 知识点三:正比例函数图像与一次函数图像的关系一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)一次函数的解题技巧一次函数是初中数学最重要的内容之一,它的知识结构体系非常丰富,在具体的解题过程中会运用到许多重要的思想方法:如数形结合思想,函数思想,转化和化归的思想,综合运用思想等,掌握一次函数的解题技巧,可以提高同学们的学习效率,下面举例说明:例题例1 如图,直线y=ax+b 经过点A (-1,-2)和B (-2,0),直线y=2x 过点A ,则不等式02≤+<b kx x 的解集是为:( )A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0分析:根据不等式2x <kx+b <0体现的几何意义得到:直线y=kx+b 上,点在点A 与点B 之间的横坐标的范围. 解答:解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点,显然,这些点在点A 与点B 之间. 故选B . 点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 二:函数思想通过学习函数使我们逐步用函数的观点,方法去思考问题,将已知条件或所给数量关系进行转化,借助函数的图像或性质去解决问题。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。